A MODEL OF E-BANKING APPLICATIONS EVOLUTION ISSUES

Nikolaï Partnov¹, Thibault Estier²
Institute of Information Systems, University of Lausanne, Switzerland
Nikolai.partnov@unil.ch¹; Thibault.estier@unil.ch²

Abstract
As a specific case of E-Commerce, E-Banking is a typical service combining a communication and a distribution channel. E-Banking applications have continuously evolved over the time, from their appearance in a context of innovation in the banking sector to the relative standardisation and convergence of current state. Several players in the banking sector were studied in order to learn specifics of client segments and implementation of requirements. This paper presents a simple model for the core issues of the evolution in E-Commerce applications. The research target is to extrapolate a framework from E-Banking case studies to understand the main business drivers over web-based applications evolution and change management.

Keywords: E-Commerce Applications Evolution, E-Banking, IT Alignment

Introduction
E-Banking developed and evolved rapidly during the last ten years. IT innovations like web-commerce and secure information exchanges have been a triggering factor for E-Banking appearance. E-Banking functionality is also evolving continuously, driven by the necessity to cover new clients’ needs and to procure more integration between electronically available banking services. The evolution of demand in online services induces a continuous evolution of the underlying E-Banking applications. This pressure to evolve raises a number of interesting questions not only to developers and maintainers but also to executive managers, some of these issues can easily be extrapolated to other web-based e-commerce applications.

This paper has the following structure. First, we give a definition of E-Banking and identify the close standing domains and discuss the methodology used. Next, we define E-Banking evolution and provide an example of it. Finally, the model of issues associated with the E-Banking applications’ evolution is presented.

Scope of Research and Related Work
From the most general point of view, the evolution of E-Banking applications falls within the domain of software evolution. We use two criteria to specify the scope of our research within the common evolution of software: the type of application and its application domain. The choice of E-Banking applications was influenced by the following factors: web applications’ evolution is not trivial and less studied, E-Banking applications are evolving continuously.

The close standing domains of E-Banking applications’ evolution are: software evolution, web applications’ evolution, E-Banking. In this paper, we mention some but not all of the existing publications covering these topics.

Lehman [7], Cook [3] and Ciraci [2] brought meaningful contribution to the domain of software evolution. But being focused on the “traditional” and desktop applications, none of these works consider the E-Commerce applications’ evolution. Among other efforts to support the web applications’ evolution, we can mention the following publications: Giuseppe and al. [5] try to put forward an approach for supporting web applications’ evolution by reverse engineering analyses of the existing web applications with limited documentation. Daniel and al. [4] use active rules for automatic evolution of adaptive web applications. Bebjak and al. [1] in order to reduce costs and increase the speed, are proposing an approach for web applications’ evolution using aspect-oriented design patterns. Hong and al. [6] in their publication discuss users’ feedback and a requirements management system that must help to support the financial portal evolution. They agree with the fact of the importance and complexity of corporate financial portal evolution, and underline the iterative and contentious character of the evolution. The key incentive of evolution for them is feedback or a change proposal coming from the end user. Wu and al. [15] are talking about core capabilities necessary for E-Banking. While mentioning “planning a new IT infrastructure” and “delivering differentiated services” among eight core capabilities, they don’t clearly distinguish a capability to conduct applications’ evolution easily. Shah [9] investigates the factors that are critical to the success of E-Banking. Like the previous authors, while talking about “system integration” and “organisational flexibility”, researchers don't focus on applications’ evolution.
In this paper we focus on the evolution of E-Banking applications as it is perceived by the users through the user interface and as it is driven by the continuous change in offered services.

We based our research partially on the results of related works, but neither of them talks about the phenomenon of evolution in E-Banking application. That is why in the next paragraph we give a definition of E-Banking applications’ evolution as we see it.

E-Banking

E-Banking or Electronic Banking is an externalisation of front-office processes and bank services towards clients using information technologies. E-Banking is a virtual front office (counter) with no human actors on the Bank side participating in the interaction. Using a standard web browser, a client can be in contact with his bank from anywhere. This makes access to the E-Banking channel universal, as is the case with any other E-commerce service. E-Banking in contrast to the traditional banking provides a service with a new quality and features. The banker is replaced by a piece of software. There are cases where the bank has no physical counter at all, only virtual ones. All interaction with customers is done through a website, supported by a telephone hot line. This is the case of Swissquote - a Swiss bank that is purely electronic [13].

E-Banking Evolution

We consider E-Banking applications’ evolution as a process, progressively changing functionalities of the underlying applications throughout time. Evolution has a continuous character. In contrast to a purely versioning process with difficult migration steps, an evolving application passes smoothly from one state to another. At each new state, the application either offers new functionalities or existing parts of it are enhanced. The complex character of E-Banking applications’ architecture, organisational structure and technical infrastructure, makes E-Banking evolution highly complex. That is why multiple issues can be associated with this phenomenon.

In figure 1 below, we give an example of the trade-off between business needs and specific requirements, requirements implementation and requirements’ evolution.

Research Methodology

We used interviews of e-banking experts as a starting point for our research. The main data were collected through series of interviews with different actors coming from various financial institutions. The target group for our research included: traditional private bank, universal bank, insurance company, consulting company and software development company. The last two actors deal as external providers of IT services and products for financial institutions such as banks and investment funds. The specifics of the financial sector – highly reserved character of the IT security policy, due to confidentiality issues - make quantitative research almost impractical: e-banking applications managers consider this subject as too sensible strategically to accept answering general surveys. That is why a first round of interviewed actors was limited to the companies mentioned...
above. Then we applied content analyses to interviews results. The way the research was carried out can be depicted by the following figure:

Figure 3. Overall methodology

A number of hypotheses coming from the study of the related work, the knowledge of the E-Banking applications lifecycle and our intuition were formulated:

- H1: E-Banking applications evolve continuously rather than by very different versions,
- H2: this evolution is complex and has a multi-dimensional character,
- H3: applications evolution is directly driven by business evolution.

In order to test these hypotheses a questionnaire was created. It contained about forty questions concerning different evolution issues. Next, this questionnaire was used as a guideline for conducting the interviews with the number of financial sectors' actors. The results of the interviews were systematized and then analysed according to content analyses methodology [8]. We can classify our research methodology as being mostly "interpretation-centric". Various data was gathered including facts, negotiated meanings by subjects/researchers and subjective understanding [10]. The answers to closed questions received during each interview confirmed the existence and importance of an issue. Then, we drew more detailed conclusions from the answers of the opened questions. In order to retrieve and group the issues, we considered the significance and the concerns interviewees given to each of them. Finally, we draw a set of major issues associated with evolution of E-Banking applications from this analysis. In fact, the results of interviews confirm the hypotheses formulated at the beginning. As we mentioned above, we based partially our hypotheses on the results of the related works, but neither of them talks about phenomenon of E-Banking applications evolution. We made the first attempt to consolidate the issues in a more detailed manner (see the next section). The consolidation of the issues is necessary in order to receive an adequate tool, [16] proceed to obtain their matrix of factors in fairly similar manner.

A simple model of E-Banking evolution issues

The purpose of the next stage of our research was to organize issues into three groups, by main research hypotheses. At the current stage of our research we try to identify the specifics of the influence of each group on E-Banking applications’ evolution. In figure 3, we present a simple model structuring issues by their groups. The structuring of issues in this way is a first step towards a fully detailed model of E-Commerce applications’ evolution issues.

Figure 4. Influence of different issue groups on application evolution

Issues belonging to different groups influence application evolution in different ways. The issues of the first group H1 stipulate that the evolution phenomenon has a continuous character. The issues of group H2 either facilitate the evolution or complicate it. The issues of the last group serve as a powerful engine of evolution and stimulate it.

Group 1 implies that E-Banking applications must be aligned with bank business strategy. Bank business strategy needs to be updated and rectified in order to respond to a constantly changing business environment. This changing business environment makes E-Banking application’ evolution almost never-ending.

Group 2 includes facts such as that E-Banking applications’ evolution is complicated and expensive; it is conducted by different actors, it depends on bank organisational structure and IT architecture. We collected evidence that better organisational, methodological approaches and technical tools can facilitate evolution considerably.

Group 3 comprises the main drivers of E-Banking applications’ evolution. The satisfaction of clients’ needs and the evolution of bank business models are amongst the most important incentives. The entrance of a bank into the new market or change in local regulations may lead to E-Banking applications’ evolution as well.
Finally we stipulate that the ability of a bank to support evolution of applications is one of its core capabilities.

Conclusions
First, we identified issues associated with E-Banking applications’ evolution. Some of the identified issues are valid for other close standing domains; some of them are specific for E-Banking applications’ evolution. We made the first attempt to consolidate the issues in a more detailed manner. The next step will be the elaboration of the model, which can be used for evaluation of: the extent of the exposure of some application to evolution, the easiness/impediment of the evolution process implementation. After this, we plan to test the elaborated model, by applying it to the evolution processes of some real life complex E-Banking example. Finally, the model may be complementary to such existing methodologies and frameworks as ITIL or COBIT.

Acknowledgement
We would like to thank Gabor Maksay, Daniel Steiger, Ivan Torreblanca and Stefano Mastrogiacomo for their help in conducting our research.

References