
Alshomali, M.A., Hamilton, J.R., Holdsworth, J. & Tee, S.W. 
(2017). GitHub: Factors influencing project activity levels. In 
Proceedings of The 17th International Conference on 
Electronic Business (pp. 116-124). ICEB, Dubai, UAE, 
December 4-8. 

Alshomali, Hamilton, Holdsworth & Tee  

 

The 17th International Conference on Electronic Business, Dubai, UAE, December 4-8, 2017  
116 

GitHub: Factors Influencing Project Activity Levels 
 

Mohammad Azeez Alshomali, James Cook University, Australia, 
Mohammada.Abdulhassan@my.jcu.edu.au 

John R. Hamilton, James Cook University, Australia, John.Hamilton@jcu.edu.au 
Jason Holdsworth, James Cook University, Australia, Jason.Holdsworth@jcu.edu.au 

SingWhat Tee, James Cook University, Australia, SingWhat.Tee@jcu.edu.au 
 

ABSTRACT 
Open source software projects typically extend the capabilities of their software by incorporating code contributions from a 
diverse cross-section of developers. This GitHub structural path modelling study captures the current top 100 JavaScript projects 
in operation for at least one year or more. It draws on three theories (information integration, planned behavior, and social 
translucence) to help frame its comparative path approach, and to show ways to speed the collaborative development of GitHub 
OSS projects. It shows a project’s activity level increases with: (1) greater responder-group collaborative efforts, (2) increased 
numbers of major critical project version releases, and (3) the generation of further commits. However, the generation of 
additional forks negatively impacts overall project activity levels 
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INTRODUCTION AND MOTIVATION 
The on-line, open-source software development environment GitHub hosts, attracts, and builds collaborative social coding 
communities that have chosen to contribute into selected, but controlled, public (free) project repositories.  
GitHub is currently the ‘absolute dominant’ data source for open source software (OSS) data mining research (Cosentino, 
Izquierdo & Cabot, 2017). It combines traditional capabilities including free hosting and version control with social features 
(Squire, 2014). Moreover, GitHub supports rapid software development, and has collaborative project features including 
bug-tracking, feature-requests, task-management and Wikis (Marlow, Dabbish & Herbsleb, 2013; Williams, 2012).  
 
Researchers note that GitHub projects vary in their collaborative activities. Such variations depend on project commits (Yu et al., 
2014). Often, pull-requests (successful and unsuccessful) telling others of changes pushed into a GitHub repository, stimulate 
further activity to solve development issues. These often present through merged commits. Over-time, more pull-request merged 
commits add to the net project activity level within the GitHub repository ecosystem (Xavier & Macedo, 2014).  
As a measure, the number of committers does not match each commit - since around 15% of committers are either 
non-collaborators, or committers who use alternate emails to lodge their commits (Kalliamvakou et al., 2016). Although the 
number of committers do contribute to the project’s activity level (Luo, Mao & Li, 2015), they also can vary in measurement 
accuracy, and so they are not used in this measurement study. 
 
Over-time the number, and frequency of project version releases, also affects project activity levels. As a project nears a release 
its activity level first increases exponentially (like a bell-curve) towards the release date, and then rapidly drops after the release 
date (Cosentino, Izquierdo & Cabot, 2017). Thus, the number of releases alters, and cyclically affects, the project’s activity level. 
Other GitHub studies gauge various aspects of project activity levels (Bissyande et al., 2013; Borges, Hora & Valente, 2016; 
Capra et al., 2011) (Mileva, 2012; Sajnani et al., 2014; Tsay, Dabbish & Herbsleb, 2014; Zhu, Zhou & Mockus, 2014). Each 
approach first adopts some form of clustering, possibly including programming language, duration, size, and social connections. 
This clustering allows each resultant data set to be studied within a chosen modelling and/or coding and/or mathematical 
approach. 
  
Popularity is gauged by (Aggarwal, Hindle & Stroulia, 2014; Borges, Hora & Valente, 2016; Ma et al., 2016; Xavier & Macedo, 
2014), and others against: (1) number of stars, (2) forks, (3) pull-requests and (4) watchers. In addition, popularity also relates to 
a project’s activity level (Cosentino, Izquierdo & Cabot, 2017). To data previous studies do not provide a holistic view of the 
constructs affecting a project’s activity level within the GitHub repository ecosystem. In this study’s context, project activity 
level is the combined (holistic) level of all of the popularity contribution measures added into the GitHub project. 
 
Hence, this study establishes a framework to capture the key contributors (constructs) and their relative GitHub project activity 
level relationships. Understanding the total effects of each of these key GitHub repository ecosystem contributors then allows a 
project creator, and their core team, to pursue ways to: (1) draw further OSS developers into this project, (2) induce higher 
project activity levels, and (3) shorten the time between project release versions. 
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GITHUB ECOSYSTEM 

GitHub projects are diverse in: format, project-size, development-cycle-stage, release-count, change-frequency, and 
changeability. GitHub houses over 20M users and 57M repositories. It draws worldwide crowd-sourced coding contributors, 
each with unique individual levels of expertise, into an environment that allows adding value to its large number of ongoing 
software development projects (Tsay, Dabbish & Herbsleb, 2014).  
 
Coding additions/deletions occur through a series of commits by repository collaborators that update a software codebase. 
Collaborating and external developers providing pull-request merged commits, are first reviewed and tested by other repository 
collaborators before their project code is merged into the main repository codebase. These collaborators are usually a core team 
of developers for this repository. Thus, the project’s creator and its core team of collaborators, can be thought of as the ongoing 
guardians of repository quality (Yu et al., 2014). The activeness of a repository’s creator in handling pull-requests also influences 
the extent of pull-request activities by the ecosystem (Aggarwal, Hindle & Stroulia, 2014).  
 
A pull request termed ‘fork-pulls’ is embedded within, and emanates from exiting repository forks. Fork-pulls can loop back into 
the fork with potential subset solutions. A visual scan suggests fork-pulls are generally numerically less than master projects 
pull-requests. Furthermore, fork-pulls tend to occur later into the project’s development. Hence, this study does not focus on 
fork-pulls.  
 
The project’s creator and its core team of collaborators also house and organize the repository’s source code documentation, 
including ‘readme’ files. Readme files are continually updated so coding contributors can select current problem areas aligned 
towards their coding capabilities (Zhu, Zhou & Mockus, 2014). The clarity of the source code, and its precision in documentation, 
encourages greater activity into the project, and small documentation improvements can deliver great benefits (Henderson, 
2009).  
 
Figure 1 presents the ecosystem of contributors to a GitHub software repository. This ecosystem supports and increases the 
capacities and capabilities of the project originator and their core teams. 
 

 
 

Figure 1: GitHub software development code contribution ecosystem. 
 
Lee et al. (2013)  see ‘Rockstars’ as star contributors whose popularity brings into a GitHub project ecosystem additional groups 
of skilled code-related followers. These additional groups often follow their Rockstar’s focussed lead, and typically generate 
further Rockstar followers’ pull-request activities within the project. This presence of a Rockstar group likely results in greater 
popularity along with enhanced project coding outcomes. A Rockstar is also a benchmark with easy project access (Ma et al., 
2016). Other individuals who generate high quality code or project contributions may also be recognized as Rockstar 
contributors. 
 
The ‘Fork-repository-clone’ group is another indication of the project’s popularity. The more forks a project has, the more likely 
the repository is recommended, and the higher the chance to increase the activity of potential code contributions into the project 
(Zhu, Zhou & Mockus, 2014). Forks sometimes generate strong changes in direction, new features, better implementation 
approaches, or even a different version of the existing project, whilst still visioning around the original project (Ma et al., 2016). 
 
‘Reviewers/testers’ discuss, assess, and recommend each contribution’s merging (or rejection) within the project. When 
reviewers are specifically assigned the review or testing process becomes shorter and more effective (Yu et al., 2014).  
 
A ‘Watcher/star-provider’ receives notifications of any event (commits, pull-requests, and issues) arising within the project and 
on GitHub’s social media (Ma et al., 2016; Sheoran et al., 2014). It is also common to see popular projects where coding 
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activities are seen to be successful as being ‘starred’ extensively, and experiencing higher commit frequencies (Cosentino, 
Izquierdo & Cabot, 2017). Watchers tend to contribute to popularity by their external activities on social media, and other digital 
community forums. 
 
‘External-social-followers’ track the actions of other coding developers of good reputation (Luo, Mao & Li, 2015). Dabbish et al. 
(2012) note GitHub’s External-social-follower and Tester/Watcher groups each contribute transparency into a project. They also 
bring additional social considerations, and their social actions can contribute towards the project’s popularity.  
 
‘Potential-new-contributors’ can be drawn into a GitHub project by: (1) current promotional activities, (2) social media, and/or 
Twitter, and/or Wiki awareness campaigns, (3) following others, (4) a desire to code, and (5) sourcing a personal area of interest.  
 
The ‘Project-repository’ houses the software codebase along with various ongoing development streams (branches) as well as 
Wiki, readme, and other contributions. Many software develops a regard GitHub repository as a professional platform where to 
host their own projects or find other interesting open-source software projects (Wu et al., 2014). Key GitHub programming 
languages are either web-focused (JavaScript, Ruby, PHP, CSS) or system-oriented (C, C++, Python). JavaScript, Java, and 
Python are the top three GitHub programming languages (Cosentino, Izquierdo & Cabot, 2017).  
 
Github Projects 
GitHub projects are diverse in: format, project-size, development-cycle-stage, release-count, change-frequency, change-degree, 
forks, watchers, and contributor-skills (Aggarwal, Hindle & Stroulia, 2014). Such potentially diverse project variations can also 
complicate project comparisons.  
 
When comparing relationships within and around GitHub projects (Aggarwal, Hindle & Stroulia, 2014; Cosentino, Izquierdo & 
Cabot, 2017) further divide different projects. Their specific categories include: (1) popularity delivering higher/consistent 
documentation or (2) library projects needing less documentation. Over time, documentation quality improves especially in 
larger projects and as responders (reporters or assignees) become more experienced (Cosentino, Izquierdo & Cabot, 2017; 
Xavier & Macedo, 2014). Thus comparative longitudinal GitHub studies remain complex. 
 

GITHUB MEASUREMENT CATEGORIES 
Some of the measurement instruments available to GitHub researchers include: 

  Project-type: GitHub projects range from major corporate software developments such as Adobe bracket, or Facebook 
that incorporate forks when overcoming issues and/or when speeding new release versions, through to small core 
creator / developer projects.  

  Duration-of-project: Large GitHub projects tend to remain active, forked, retain interest and be long-term ongoing 
operations (Cosentino, Izquierdo & Cabot, 2017). 

  Project-measures: GitHub measures commits, committers, software-releases, popularity-of-project, 
number-of-stars-provided, forks, watchers, followers, testers, and reviewers. 

  Project-language: Key common GitHub software languages (discussed above) draw like-skilled programmers, and are 
more likely to retain project communities in excess of 40 (Cosentino, Izquierdo & Cabot, 2017). 

  Readme files: 95% of popular GitHub projects have non-empty readme files (Tsay, Dabbish & Herbsleb, 2014).  
 
GitHub popular projects typically engage forking. They also show clearer, more-consistent documentation advice (Aggarwal, 
Hindle & Stroulia, 2014), and useful documentation can draw-in other coding contributors (Hata et al., 2015). This 
documentation may also be supported by testing mechanisms (Tsay, Dabbish & Herbsleb, 2014), Wikis (McDONALD et al., 
2014), Twitter (Singer, Figueira Filho & Storey, 2014), social media and websites (Jiang et al., 2017). 
 

GITHUB STUDY 
Theoretical Basis 
GitHub is recognized in (Wu et al., 2014) study as a professional platform where software developers can: (1) host their own 
project, or (2) contribute towards other interesting projects, or (3) keep informed regarding what their peers are coding. GitHub’s 
repository projects are typically not developed by individuals, but by a community of coders and associates working 
collaboratively. Hence, the more active the community project becomes, the quicker it progresses towards task completion 
(coding, documentation, and discussion).  
 
The ‘Theory of Social Translucence’ suggests a clear awareness of a project and its design strategies, is advanced where a 
coherent behavior occurs through the visible sharing of each project collaborator’s identity, contributions, and ongoing activities. 
These behavioral actions also occur within a GitHub project’s community (Dabbish et al., 2012). This transparency extends out 
to GitHub followers, watchers, and stars-provided, and it reaches into social supporting areas including Facebook, websites, 
Twitter, and Wikis (Aggarwal, Hindle & Stroulia, 2014). Thus, progress is likely quicker where coherent behavior is permeated 
across a GitHub project’s community. 
 
GitHub behaviorally ties developers into a project via ‘Information Integration Theory’ - which draws on the ‘Theory of Planned 
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Behavior’ (Ajzen, 1991). It links GitHub responder attitudes and their subjective norms (Ajzen, 1991) through their common 
beliefs and behaviors. These intentionally drive the overall behavioral (strength-of-belief) within their behaviorally-controlled 
project’s domain. Thus, for projects of around the same size, same programming language and similar degree of complexity, the 
GitHub project’s responder-tracking-measures likely related to its resultant activity level and to its overall development time.  
 
Hence, this longitudinal study considers the GitHub project’s activities as those contributing towards advancing the source code 
towards project solution. It poses the research questions:  

  RQ1: do collaborative responder-group efforts drive GitHub JavaScript project activity?  
  RQ2: do less time-to-release version completions drive GitHub JavaScript project activity 

 
This study’s approach incorporates the above theory and literature considerations. Cosentino et al. (2017) adds to this literature 
assessment - contributing that project activities levels are generated via multifaceted contributions that encompass the above 
literature. As almost all popular GitHub projects possess active readme files (Tsay, Dabbish & Herbsleb, 2014).  This study also 
asks: 

  RQ3: do more changes-to-documentation drive GitHub JavaScript project activity? 
 
Study Considerations 
To reduce GitHub’s vast array of projects into a manageable and comparable scale, this study adopts a convenience approach. It 
focuses on longer-term and substantive software developments. Projects are included if they have been operational, and active, 
for at least one year’s duration. Only JavaScript most popular projects are considered. 
 
This study assesses GitHub project activity levels. It captures Rockstars and their followers through their inconsistent, but 
selective pull and fork contributions into each specifically-chosen project. It recognises that forks, pulls watchers and 
stars-provided are contributors towards a project’s activity level. It compiles these contributors with the other construct 
intermediary measures defined above (commits, project-version-releases). It builds a GitHub path model that delivers a 
measurable project activity level outcomes. It determines each responder group contributing to the project’s activity level 
through Figure 2’s GitHub JavaScript framework model. These independent GitHub responder contributions offer the overall 
total effects pathways that contribute towards the project’s overall activity level (Xavier & Macedo, 2014). 
 

 
 

Figure 2: GitHub JavaScript framework model. 
 
Study Approach 
This study assesses Figure 2 for the current top 100 GitHub JavaScript projects as gauged against the level of forking. The most 
popular projects are typically extensively forked, and usually well-starred (Berry, 2015). Each fork copies the original project 
repository (https://github.com/popular/watched). Being outside the original project repository each fork: (1) allows free code 
experimentation, (2) develops proposed project changes, (3) generally feeds back to the original project repository, or (4) 
sometimes becomes a development initiation point for a new project idea (or code). Thus the level of forking offers a well-used 
approach to define top GitHub projects.  
 
The study’s structural path model combines the influence findings of such past studies. It models their relative input 
measurement effects against project activity level. Aggarwal et al. (2014) argue that small increases to existing documentation 
helps the growth of project activity levels, and helps reduce the project time to reach a product-life-cycle midpoint. Thus 
standardized total effects can be gauged against project activity levels. 
 

METHODOLOGY 
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Data Capture 
GitHub provides a web-based API for querying the raw information and statistics about GitHub repositories over time. The data 
extraction method used by this study is presented in Appendix 1. Table 2 illustrates data extraction collects the Figure 2 construct 
measures. Commits include source code and documentation addition/deletion counts. Contributors are summed counts of project 
forks, pulls, watchers and stars-provided. Product-version-releases are numerical counts into the project. Project activity level is 
the number of lines added or removed from repository files. These construct measures are exported to SPSS23.0 for statistical 
assessment and modelled via structural path analysis in AMOS 23.0. 
Data Analysis 
Table 1 shows extracted entries for the current top 100 GitHub JavaScript projects totalled 840Mb. All data set entries relate to 
project information contributions. Commits is the number of accepted changes.  
 

Table 1: GitHub JavaScript data (top 100 projects). 
Project Actions Top Projects 

JavaScript 
Project Actions Top Projects 

JavaScript 
Project Actions Top Projects 

JavaScript) 

Commits 336,181 Pulls 5,223 Additions 180,982,063 
Contributors 19,762 Watchers 92,536 Deletions 95,764,624 
Releases 7,167 Issues Open 26,117 Activity 279,876,894 
Stars (provided) 1,800,049 Issues Closed 192,503 Owner 100 titles 
Forks 454,640 Total Updates 276,746,687 Owner Repos 100 named 

 
The committers are the individual entries contributing to the commit. Contributors are the different individuals adding something 
to the project. Stars-provided are the recognition starring provided by individuals in recognition of their general support for the 
project and its targets. A fork is a split from a project and it differs from its comparative pull request. A fork often works in 
response to a variant in thought (or approach) and a fork can sometimes heads off in a different direction taking some of the 
project’s team resources with it. Pulls requests are rare as they represent attempts to re-work or adapt the code-base.  Releases are 
also small in number. They occur when the project work is at a deliverable stage. Watchers observe progress of a project. They 
may or may not then contribute at a later time to the project.  
 
Popularity has been used in the past by others to measure project activity level. However, popularity engages inconsistent models, 
and popularity is derived as a dependent regression. Hence, this study adopts to measure GitHub contributions as its measure of 
overall popularity, and terms this measure the ‘project activity level.’ The project activity level is a large term capturing all 
information around the lines of code added or deleted. data from GitHub’s top 100 projects is summarized below in Table 1. The 
project activity level structural path model is developed in AMOS23.0 from Table 1’s data set. It is displayed as Figure 3. 
 
 

 
Figure 3: GitHub JavaScript project activity level structural path model. 

 
The project activity level structural path model (Figure 3) shows excellent fit (χ2/df = 20.01/15 = 1.33; p < 0.171; TLI = 0.983; 
CFI = 0.991; GFI = 0.952; AGFI = 0.885) (Cunningham, 2008; Hair et al., 2010). The GFI-AGFI difference being just above 
0.06, and the RMSEA (0.059) being above 0.05, both indicate there remains some minor fit improvement – such as engaging a 
larger case study of top GitHub projects (Kline, 2015), or using an even tighter outlier (kutosis/mahalanobis-distance) removal 
consideration (Cunningham, 2008; Hair et al., 2010).  
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Three outliers (cases 25, 31, 37) were removed - leaving a final data set of 97. Ideally the data set of projects should exceed 
150-160 (Hair et al., 2010; Muthén & Muthén, 2002). However structural models retain meaning within sample sizes of 100–150 
case range (Anderson & Gerbing, 1988; Ding, Velicer & Harlow, 1995; Tabachnick & Fidell, 2012; Tinsley & Tinsley, 1987), 
and with 10 times as many cases as parameters, this data set of 97 remains acceptable (Kline, 2015). The final data set contains no 
notable mahalanobis outlier distance (SD) gaps through to the mean. Also, all construct skews are acceptable (< 3), but with vast 
differences in project scope and scale, multivariate kurtosis is large (113) but acceptable (Hair et al., 2010). Thus the model is 
suitable for structural path analysis. 
Watchers are highly correlated with the stars-provided to the project, and strongly correlated with the degree of forking. The 
level of forking exerts negative influences towards project version releases as these draw potential project contributors into 
non-core development tasks. The number of project version releases exerts cyclical peak-and-trough influences that negatively 
directly impact the overall project activity, but positively impact into commits and contributors. Commits and project level 
activity move in-line with each other, but they are different constructs. Contributors (via commits) exert an intermediate effect on 
project level activity. 

DISCUSSION 
Figure 3’s project activity level structural path model is summarized in Table 2’s standardized total effects. Table 2 shows the key 
effects in generating Project Activity Levels. The major contributors are the pull requests, the watchers, the number-of-releases, 
the total different contributors, and the commits. The commits lodged directly mirror the Project Activity Levels. Thus, five 
levers can be used by the project creators and their core team leaders when seeking to speed their project’s software development 
processes. The number of stars-provided to the project make a lesser contribution.  
 
The forks actually work against the project’s progress by generating very minor negative total effects into the project’s activity 
level. They sometimes dilute the focus of the project’s software development strategies. Here, a fork may generate new ideas, 
create a new project, and then draw some original project developers off into this new software development direction, thus 
retarding the original project’s activity level.   
 

Table 2: Standardized Total Effects for current top (97/100) GitHub JavaScript Projects. 

 Pulls Watchers Forks Stars 
(provided) Releases Contributor

s 
Commit

s 

Forks 0 0.69 0 0 0 0 0 
Stars (provided) 0 0.93 0 0 0 0 0 
Releases 0.25 0.22 -0.23 0.41 0 0 0 
Contributors 0.45 0.48 -0.06 0.11 0.26 0 0 
Commits 0.34 0.35 -0.10 0.18 0.43 0.62 0 
Activity 0.22 0.22 -0.08 0.14 0.35 0.35 0.98 

 
Figure 3 shows collaborative responder-group efforts do drive GitHub JavaScript project activities as a multi-pronged approach 
(RQ1). Research question RQ2 is supported as major (critical) version releases do positively affect project activity levels. 
Multiple intermittent and minor version releases exert less GitHub JavaScript project activity levels because they often involve 
slight improvements, and only require minimal activity level contributions. The remaining research RQ3 question is supported 
when a code commit’s documentation is lodged. Here, more commits also brings more changes to documentation, and as a 
GitHub JavaScript project’s activity level rises, additional documentation emerges as a continual project requirement. 
 

IMPLICATIONS 
Theoretical Implications 
This GitHub study follows responder behavioral patterns, in particular Information Integration Theory, and the Theory of Social 
Translucence. This framework allows behavioral activities to be gauged collectively and measured against each project’s overall 
activity level. This allows a new way to compare projects and to understand projects once the masking features such as: size, 
programming-language, degree-of-complexity and longevity are removed.  
Extensions to this study can map each project responder’s/collaborator’s identity, contributions, and ongoing activities through 
to GitHub repository followers, watchers and stars-provided into their social interaction domains including Facebook, websites, 
Twitter, and Wikis (Aggarwal, Hindle & Stroulia, 2014). Here, interpretations of value by understanding social network site 
consumer engagements (Hamilton & Tee, 2013) can be incorporated to extend the behavioral understanding of GitHub’s social 
and external responders. 
 
Practical Implications 
The activity level of JavaScript project responders is measured using repository-collated measures. These behavioral measures 
first include pull-requests and project watchers which results in subsequent commit changes, or watchers changing roles and then 
generating new pull-requests against the project’s repository. Pull-requests impact on project contributions and on project 
version releases, and with commits positively influence on project activity levels. Commit changes are generally clarified 
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through comments with linkages into project documentation. If accepted, these commits may also appear as ongoing 
documentation updates. Table 3 shows five constructs can be leveraged to jointly (or individually) deliver, faster project 
software-development processes.  
 
A lead focus for the repository creator and the core team of collaborators is to generate additional commits. Here, commits can be 
encouraged by cross-promotional strategies including: (1) encouraging pull-requesters to respond and to generate multiple 
commits, (2) promoting the starring of the ongoing value of the project’s development on Facebook, Twitter, and web media, and 
also converting social media watchers into pull requesters, and (3) engaging developer forums, Wikis, conferences and across 
other social connectivity avenues directly targeted towards encouraging more pull requests and follow-up commits.  
 
Social media sites can also add transaction-related project information via inclusions of community ‘fan-pages.’ Fan-pages help 
to build stronger communities, provided they show usefulness, economic value, and are suitably branded. Here promotions 
and/or other consumer benefits can be incentivized (Hamilton & Tee, 2013). In addition, to further highlight and draw developer 
traffic, fan-pages news can be linked to HackerNews and GitHub Explore (Borges, Hora & Valente, 2016). Ultimately the key 
internal approach is to generate very-rapidly reviewing and incorporating decisions across all commits.  
 
A second behavioral approach is to recognize committers by crediting their contributions against their personal email. This is 
achievable by recognizing, ranking, and promoting each contribution as enhancing: performance and/or quality and/or service 
and/or economic value and/or emotional perception (Hamilton, John R & Tee, 2015). These value recognition triggers are 
rewards to the respondent committer, and they likely positively affect the committer’s satisfaction and ongoing loyalty (Hamilton, 
John R. & Tee, 2015). This recognition approach behaviorally encourages the committer to pursue further opportunities of 
benefit to a GitHub project. It also enhances their personal profile, and it promotes more project activity. 
This study considers a collation of contribution constructs that have sometimes been used as popularity measures as exhibiting 
behaviors harmonious with the project. It shows all of these contribute directly or indirectly as build components of the project’s 
activity level.  
 
This study recognizes that increasing contributors is a complex task. For example, the project’s activity level is cyclic, peaking 
around each version release (Borges, Hora & Valente, 2016). More major and critical project releases drive activity levels. These 
release-date developer traffic hypes can be enhanced with boosts via continual social media project-related achievement postings 
(Cassidy & Hamilton, 2016) - provided quality public communications are delivered. 
 

FUTURE RESEARCH 
Measurement Aspects 
To further validate the project activity level GitHub JavaScript structural path model two additional studies are suggested (1) 
random sampling across the full suite of JavaScript projects, and (2) re-testing against each key GitHub programming language. 
 
The refinement of the pull request counts is another measurement consideration. Pull-requests occur because of internal commits 
for review as well as and via forked versions of a repository. Some fork-pull-requests loop back into the originating repository. 
Hence, it may be useful to categorise pull-requests, and also to consider longitudinally if fork-pulls do actually occur later during 
project development. This research is underway.  
 
There remains a need to create and deploy APIs that monitor project activity levels over time. This can expose where open source 
software development offers maximum improvement for the GitHub project under consideration. 
Commits offer detailed content analysis that can be mined to elucidate where, and how, the documentation of substantive top 
performing programming language projects can be improved. The relevance of which commit(s) provide most benefit is another 
area waiting development. 
 
Theoretical Aspects 
GitHub studies can be theory-based, and/or behaviorally-based, and/or translucently-based, and/or values-based. They can also 
be linked via social networks and web media through into other consumer marketing and retailing approaches - typically 
focusing on consumer motivation, consumption and gratification aspects (Hamilton, John R & Tee, 2015). 
 
Managerial Aspects 
The project activity level model is applicable for GitHub JavaScript project creators. It can be astutely managed to generate high 
project level activities. It can be interpreted through Table 2’s total effects and Figure 3’s path strengths towards better targeting, 
and harnessing of a project’s reach, and engagement, across relevant software development communities. 
 
Learning how to extract pertinent information from responder review comments is often useful to a repository originator seeking 
to improve ongoing project deliverables. Approaches to understanding big data vary, but Bello-Orgaz et al. (2016) describe big 
data social capture approaches are of use when considering GitHub’s watchers. 
 
Projects can be more closely managed by developing text capture routines to extract responder key words from GitHub 



Alshomali, Hamilton, Holdsworth & Tee 

The 17th International Conference on Electronic Business, Dubai, UAE, December 4-8, 2017  
123 

documentation. For example value(s)-related words epitomising behaviors can include motivation (intentions to act) towards 
engaging/actioning, consumptive actions being undertaken, and gratification reflections of actions delivered. This data can then 
be real-time analysed, thus keeping GitHub repository originators behaviorally attuned to individuals and to their core 
collaborators. 
 

 
CONCLUSION 

The current top 100 GitHub JavaScript projects are assessed across various pathways of project contribution. Data captured from 
these popular projects differs in: format, project-size, development-cycle-stage, change-frequency, change-degree, forks, 
watchers, and contributor-skills, and has remained difficult to interpret. Three theories (Information Integration, Planned 
Behavior, and Social Translucence) frame this study’s comparative project activity level structural path model approach. 
 
A JavaScript project’s activity level can be enhance with increased responder-group collaborative efforts, with more frequent 
major project version releases, and with greater numbers of commit project additions and/or deletions. The generation of 
additional forks delivers a minor net negative impact on project activity levels. Hence, repository originators and their core team 
of collaborators should ensure forking contributions remain under close monitoring and assessment. 
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