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ABSTRACT 

Gray Hole Attack is an advanced transformation of black hole attack. Both of them are a common type of attack in Wireless 
Sensor Network (WSN). Malicious nodes may constantly or randomly drop packets and therefore reduce the efficiency of the 
networking system. Furthermore Software Define Network (SDN) has been highly developed in recent years. In this type of 
networks switch/router functionality is separated into the control plane and data plane. Network managers can select control 
policies and build operating rules according to their own preferences. In addition, network protocols and packet fields are also 
programmable. Because the switch/router only implements the data transmission and executes the switching/routing decisions 
based on commends coming from control plane. Compromised switches/routers themselves or malicious control instructions 
both can result in selectively dropped packets. This makes a gray hole attack possible in the infrastructure of SDN. Therefore, 
this paper would like to discuss time-base and random-base gray hole attack in SDN, and then propose a useful detection method 
based on weighted K-Nearest Neighbor (KNN) and Genetic Algorithm (GA). The simulation data collected from switches/routers 
indicate that our method does demonstrate pretty good performance. 
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INTRODUCTION 
Software Define Network (SDN) decouples the control function from traditional data forwarding devices. The switches/routers 
become simpler because they separate the control unit and _functionality to controller. The controller can easily manage the 
network resource and traffic by sending the instruction to the switches/routers (data plane). The switches/routers can only focus 
on the packets transmission. The switches/routers typically ask the controller to obtain flow rules when the data plane receives 
new packets. The flow rules are stored in the Flow Table. Hence every decision and calculation are made by the controller. The 
centralized architecture can make it easier for the network manager to collect network information and implement the policies. 
Due to the fast growth of SDN, nowadays, it faces many types of threats. Mostly the purpose of these attacks may crash the 
network or reduce the network efficiency. Gray Hole Attack, also named selective forwarding attack, is one of the common 
attacks identified in the wireless networks, including mobile ad hoc network (MANET), WSN, etc. It is a variation of Black Hole 
Attack which has some compromised switches/routers swallow all of the received packets (Shanmuganathan & Anand, 2012). 
Gray Hole Attack is more difficult to detect due to its unpredictable behavior changing between the normal device and the black 
hole. Many prior research results regarding Gray Hole Attack focused on wireless networks. However, we believe it may also 
cause huge losses if initiated in SDN. 
Machine learning algorithms have been very popularly used in recent years. The application of big data analytics to mitigate 
security attack problem has become more and more attractive (Cui et al., 2016). Because of the rapid growth of calculation 
capacity, modern computers or server farm can handle a lot more calculation jobs than ever before. As a consequence, the 
separation of data plane and control plane becomes more feasible for controller to collect huge data and then implement the 
switching/routing decision making and execute the machine learning algorithms to detect malicious attack as well. 
In this paper, we study the Gray Hole Attack in SDN and then design an intelligent method to detect it. This method including 
three phases combines the weighted KNN and GA to recognize the abnormal switched/routers. The simulation results support 
the effectiveness and efficiency of our method. 

 
LITERATURE REVIEW 

Review of Software Defined Network 
McKeown et al. (2008) had proposed the first concept of Software Define Network, the OpenFlow. OpenFlow switch consists 
of three parts: (1) Flow Table, (2) Secure Channel, (3) OpenFlow Protocol. The Flow Table is composed of many flow entries to 
inform the switch how to process the flow. The Secure Channel connects the switch to the controller. It allows transmitting 
instruction and packets between switch and controller. OpenFlow Protocol provides a standard for controller to communication 
with switches. 
 
Flow Table plays an important role in OpenFlow switch. It manages the packets transmissions. When the switch receives a packet, 
it checks the flow table first. If the packet header matches the rule in the table, the switch will do the action as indicated in the 
rule. If the packet header doesn’t match any rules in the tables (called table miss), the switch will check table-miss table. The 
actions in table-miss table include (1) send the packet to the controller (called packet-in), (2) forward to all interface, (3) drop 
the packet. After receiving the packet-in packet, the controller checks the network topology and add new rule about the packet 
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in the switch. Next time the switch receives a packet with the same destination header, it will know how to handle this packet. 
Actually there are three parts in the Flow Table, i.e. packet header, action, and counter. 
 
Gray Hole Attack 
The gray hole attack is an extension of black hole attack in which a malicious node’s behavior is exceptionally unpredictable 
(Jhaveri et al., 2012). It typically can be categorized into three types (Jhaveri et al., 2010). The first one is that a node may behave 
like black hole in a short time, but later on it acts like a normal node in the network. We call this type ‘Gray hole attack’. It 
changes its status based on some situation and the drops the receiving packets accordingly. The time-based gray hole is that a 
node changes its status in regular period. For example, acts like a normal node in the first five seconds, and acts like a black hole 
node in the next five seconds and so on. The random-based gray hole is that it changes its status for no reason, usually by 
probability. For condition-based gray hole, it changes its status if some specific conditions happen. For example, the network 
speed reaches a specified value and then the switching node starts to drop packets. In the second type, a malicious node may 
drop packets in fixed percentage or drop packets of a specified data flow and forward all other packets. We call it selective 
forwarding attack (Bysani & Turuk, 2011). For this type, we classify them by defining how they drop packets, i.e. they drop 70% 
of all the received packets or 50% of flow 2 in queue. The third type is the hybrid of the previous two types and we can also 
name it as the selective forwarding gray hole. In this way, a malicious switch/router may drop packets randomly in the gray hole 
period. 
 
We may consider that the gray hole is a kind of passive attack in general. It does not completely interrupt the normal operation 
of the network (Wazid et al., 2011). However, the black hole could be an active attack. The black hole attracts the flow by 
modifying the routing table. Although the gray hole attack is an extension of the black hole attack and it only drops packets 
without attracting the data flow, the gray hole attack is more difficult to detect than the black hole attack. That is because the 
malicious black hole switch /router drops the received packets with certainty (Hongmei et al., 2002). 
 
Gray Hole Attack in SDN 
Dhawan et al. (2015) proposed SPHINX: Detecting Security Attacks in Software-Define Networks. They presented a detect 
system to defend serval attacks in Software Define Network. One of these attacks is that there may be a black hole switch in the 
data plane. A malicious switch in the flow may drop or siphon off packets. They implemented it by the ‘action’ attribute of the 
OpenFlow. The ‘action’ of drop can make the switch drops specified packets. When it drops all packets from the in-port, a black 
hole switch occurs. Since the black hole switch may exist in the Software Define Network, the gray hole switch also may exist 
in the Software Define Network because a gray hole is the variation of black hole. 
 

PROPOSED DESIGN 
Our method is inspired by those results published by Sen et al. (2007). They proposed an operating architecture to detect the gray 
hole attack and the cooperative black hole attack in the Wireless Sensor Network. The detection approach is divided into three 
phases, i.e. anomaly detection phase, gray hole attack test and confirmation phase, and warming phase. The traffic monitor of 
SDN collects the traffic data and flow parameters of each switch/router constantly. After collecting these data and parameters, 
the controller uses the weighted KNN with GA to classify whether each switch/router is abnormal or not and then builds the 
suspicious list for the further test and confirmation in the next phase. In order to achieve the higher accuracy of detection, we 
should retest all the switches/routers in the suspicious list until we believe that their statuses are confirmed as clear or guilty. In 
this architecture, we may send test packets to go through some switches/routers in the suspicious list non-periodically. If the 
evidence is strong enough, the system will alert the manager and controller that which one should be a gray hole switch/router 
in the network. 
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Fig. 1. Three phases of gray hole detection 

 
In the abnormal detection stage, the monitor evaluates each switch/router using weighted KNN with GA in which the weights of 
features of KNN are calculated according to GA since it is very difficult to decide which attribute is more important than the 
other in various situations and what number should be assigned as weight. Fig. 2 demonstrates the flow char of Genetic Algorithm 
that generates the weight set. 
 

 
Fig. 2. Flow chart of Genetic Algorithm to generate the weight set 

 
Anomaly Detection Phase 
A gray hole drops the packet, and therefore decreases the networking efficiency (Tseng et al., 2011). In the anomaly detection 
phase, the SDN network monitor collects the detailed network information continuously. The monitor calculates the features of 
each switch/router, and these data will be used by the weighted K-Nearest Neighbor algorithm to classify them. If any 
switch/router is classified as the gray hole, the monitor should add it into the suspicious list for the next phase to implement the 
further test. The features we use in weighted KNN are listed in Table 1. 
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Table 1. Features in weighted KNN 

Features Description 
pkt_rx The number of packet received in the period 
pkt_tx The number of packet transferred in the period 
speed Bits transferred per second 
change of speed The difference of speeds  
packet dropped The number of packet dropped in the period 

 
We choose weighted KNN features based on the transmission behavior of switch/router. The pkt_rx and pkt_tx are collected 
from the monitor module. The speed is calculated from tx_byte which is also collected from the monitor. The change of speed is 
calculated from the speed parameters. When the gray hole switch drops the packets, the speed of gray hole switch must drop to 
a low level. This should make the change of speed higher than a normal value. The packet dropped shows the number of packets 
dropped in some period. When there is a gray hole switch within the network, the packet dropped must be higher than a normal 
one. In the K-nearest neighbor algorithm, it usually calculates the distance and classifies items by using brute force concept. 
When the number of data and items we want to classify grows, it must do lots of calculation. Furthermore, the dimension of the 
features also affects the time complexity. Since the time complexity of K-nearest neighbor classification is O(D*n), where D is 
the dimension of feature and n is the number of data in data set, it is very hard to classify all the switches in a short period. To 
solve this problem, we use the ball tree data structure (Liu et al., 2006). The ball tree is a binary search tree. Every node defines 
a D-dimensional hypersphere. The concept is to encode the aggregate distance of the sample to reduce number of the calculation. 
The time complexity of ball tree in K-nearest neighbor is O(D*logn). Constructing the ball tree costs most of resource in CPU, 
but it is quite efficient to classify the dataset. With this data structure, we can construct the ball tree in the initial phase and the 
classification work can be done in time. 
 
Gray Hole Attack Test and Confirmation Phase and Warming Phase 

 
Fig. 3. Flow chart of test and confirmation phase and warming phase 

 
In the test and confirmation phase as shown in Fig. 3, the controller non-periodically sends test packets to go through suspicious 
switches/routers recorded in the suspicious list. These packets are filled with specific header. When one destination receives the 
packet, it sends back to controller immediately. If the controller doesn’t receive the packet, then that switch/router may be gray 
hole with high probability. One switch/router will be identified as a gray hole after n consecutive losses of packets. If the 
controller receives all of n testing packets, then that switch/router should be released from the suspicious list. If not both, the 
monitor keeps the switches/routers in the suspicious list and waits for the results of next round test. Once a gray hole switch/router 
is detected, the controller alerts all the network by flooding this warming message as indicated in Fig. 3. 
 

SIMULATION RESULTS AND DISCUSSION 
Simulation Tools 

 Mininet 
Mininet (Oliveira et al., 2014; Mininet, 2018) is a network simulator. It runs hosts, switches, routers and links in Linux kernel. 
All the machines in Mininet are just like the machines in the real world, i.e. using ssh in it and running the programs. Sending 
packets in Mininet is also very much like sending in the real Ethernet interface. The user can write a program to input the speed 
and delay. The packets will get processed in the steps which are run in real Ethernet switches. All the virtual hosts, switches, 
links and controller are like the real things but created by software rather than hardware. Most importantly, its behavior is similar 
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to hardware element in Ethernet. The user can create the necessary topologies, customized packet forwarding rules and the 
network application. Moreover, Mininet is widely used for simulating the Software Define Networks. Based on the above 
observation, we decide to use Mininet to create the network topology and simulate our proposed approach. 

 Ryu controller 
Ryu (Ryu controller, 2018) is one of the controllers used in the Software Define Network. The source code is available on the 
GitHub and is maintained by the open Ryu community in Japan. Ryu is a component-based SDN framework. It provides well-
defined API for developers to create and manage the network easily. We decide to use Ryu controller in our simulation because 
it is written in Python, and we use scikit learn which is a famous machine learning library for Python, too. 

 Scikit learn 
Sciket learn (Sciket-learn, 2018) is a free software machine learning library for Python language. It contains many machine 
learning algorithms categorized as classification, regression, and clustering algorithms. It is designed to cooperate with the 
Python numerical and scientific libraries Numpy and Scipy. Every algorithm is designed in high efficiency, the time cost and 
memory cost are quite low. Since our monitor has to classify every switch/router in short period, it must finish the calculation of 
algorithms in time. That’s why we use the KNN in scikit learn rather than create new one. 

 D-ITG 
D-ITG (Distributed internet traffic generator) is a traffic generator in internet (Botta et al., 2012; D-ITG, 2018). It supports many 
protocols, including TCP, UDP, ICMP, etc. It also supports both IPv4 and IPv6 traffic generation and it is capable to generate 
traffic on the network, transport, and application layers. Furthermore, the packet size and the distribution of generating traffic 
could be defined by the user. It makes the simulation environment closer to the real world situation. The distributions include 
uniform distribution, exponential distribution, normal distribution, Poisson distribution, and Pareto distribution. We use D-ITG 
to generate IPv4 traffic with UDP in our experiment. 
 
Simulation Setup 

  Topology 

 
Fig. 4. Fat-tree topology 

 
The fat-tree topology is a famous topology in Software Define Network. We choose this topology in our experiment because 
many studies use this topology to simulate their environments, too. Fat-tree topology is shown in Fig. 4. There are 20 switches 
and 16 hosts in the fat-tree topology. The 1001~1004 switches are the core switches based on definition and 2001~3008 are 
aggregation switches. Four switches compose a ‘Pod’, i.e. switch 2001, 2002, 3001 and 3002 compose Pod 0 as shown in Fig. 
4. We define No. 1001~1004 switches as layer 1, No. 2001~2008 switches as layer 2 and No. 3001~3008 switches as layer 3. 
Each switch in layer 3 connects two hosts. We will discuss the detection rate and accuracy rate for gray hole switch in each layer. 

  Traffic model 
The concept of traffic model we used is commonly used in many experiments for Software Define Networks. Each host sends 
UDP packets to two hosts in every other Pods except its own Pod. The receiver is chosen randomly. Let’s take the example in 
Fig. 4, host 1 may send six data flows to other six hosts, two in Pod 1, the other two in Pod 2, and the remaining two in Pod 3. 
Every host sends the data flow until the end of the experiment. D-ITG can generate packets based on many stochastic distributions. 
We use D-ITG to send UDP packets in normal distribution. 

  Gray hole switch implementation 
We use the attribute ‘hard-timeout’ in Flow Table to implement the gray hole switch in Software Define Network. The meaning 
of hard-timeout is that the flow rule will be eliminated after n seconds when this rule is created. We let the controller sends gray 
hole rule every m seconds and the hard-timeout of the rule is n. In this way, the gray hole switch drops packets for n seconds 
within every m period. 

  The data set for KNN 
We simulate the gray hole switch and then collect the data because there is no real data set available on Internet. In the simulation, 
we choose one switch as gray hole and run for 3 minutes. The monitor collects the features we need from each type of switch. 
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The simulation is run 60 times and each switch has been selected as the gray hole at least 2 times. We totally collect more than 
150,000 sets of data for normal switches and gray hole switches. In the beginning of the experiment, we randomly choose 10000 
data sets of normal switches and 10000 data sets of gray hole switches as the training data set for K-nearest neighbor. 

  The K value 
The K value for K-nearest neighbor is decided based on the accuracy rate of testing data. The initial data set contains 20000 data 
sets for each type of switches. The accuracy rate is the percentage of total testing data which are the same as the original ones. 
Each value are run 10 times and then we calculate the average accuracy rate. Finally we select K value with the highest accuracy 
rate. As shown in Fig. 5, 31 is the best K value for our experiment because the accuracy rate is nearly 75%. 
 

 
Fig. 5. Accuracy rate of K 

 
 

Table 2. Experiment parameter 
Emulation Parameter Value 

K value 31 
Numbers of genes 20 

Mutation rate 0.01 
Generation number 30 
Get topology period 20 sec 

Initial time 90 sec 
Detection time 180 sec 

Total Emulation time 270 sec 
Repeat times Each layer for 100 times 

 
Results of Time-based Gray Hole Attack 

 Monitor period: 3 seconds 

 

 
Fig. 6. Performance comparison for detection of time-based gray hole attack with shorter monitoring period 
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We can observe that our GAKNN (KNN with GA) outperforms the traditional KNN while detecting time-based gray hole 
attack with shorter monitoring period. 
 

 Monitor period: 8 seconds 

 

 
Fig. 7. Performance comparison for detection of time-based gray hole attack with longer monitoring period 

 
We can observe that our GAKNN (KNN with GA) outperforms the traditional KNN while detecting time-based gray hole 
attack with longer monitoring period. 
 
Results of Random-based Gray Hole Attack 

 Monitor period: 3 seconds 

 

 
Fig. 8. Performance comparison for detection of random-based gray hole attack with shorter monitoring period 

 
We can observe that our GAKNN (KNN with GA) outperforms the traditional KNN while detecting random-based gray hole 
attack with shorter monitoring period. 
 

 Monitor period: 8 seconds 
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Fig. 9. Performance comparison for detection of random-based gray hole attack with longer monitoring period 

 
We can observe that our GAKNN (KNN with GA) outperforms the traditional KNN while detecting random-based gray hole 
attack with longer monitoring period. 
 

CONCLUSIONS 
In this paper, we extend the gray hole attack study in Wireless Sensor Network to Software Define Network. Since the gray hole 
switch/router drops packets and reduces the efficiency of the Software Define Network, we propose a detection method and the 
corresponding architecture. The abnormal detecting phase is the key core to find the gray hole attack and GAKNN is suggested 
in this paper. The GAKNN classifies the switches/routers in a higher accuracy rate than the original KNN. Using GAKNN, the 
accuracy rate increases 10%~15%. The false positive rate reduces 1%~2%. The necessary detecting period reduces 2~4 rounds. 
In the future, we may study the complex type of gray hole attack. Furthermore, we should consider to simulate in a bigger 
topology to test the performance of our proposal. For the detection part, we can try other machine learning algorithms or statistic 
methods in the abnormal detection phase. 
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