

Abstract

Query optimization in OLAP applications is a novel
problem. A lot of research was introduced in the area of
optimizing query performance, however great deal of
research focused on OLTP applications rather than
OLAP. In order to reach the output results OLAP queries
extensively asks the database, inefficient processing of
those queries will have its negative impact on the
performance and may make the results useless.
Techniques for optimizing queries include memory
caching, indexing, hardware solutions, and physical
database storage. Oracle and MS SQL Server both offer
OLAP optimization techniques, the paper will review
both packages’ approaches and then proposes a query
optimization strategy for OLAP applications. The
proposed strategy is based on use of the following four
ingredients: 1- intermediate queries; 2- indexes both B-
Trees and Bitmaps; 3- memory cache (for the syntax of
the query) and secondary storage cache (for the result
data set); and 4- the physical database storage (i.e. binary
storage model) accompanied by its hardware solution.

Keywords: query optimization, OLAP, caching, indexing,
MS SQL Server, Oracle.

1. Introduction to query optimization

Query Optimization (QO) is a process the success of

which affects the entire database (DB) performance [15].
There are basically two types of DB:
1. Archival DB e.g. data warehouse (DW) that is

primarily used for query retrievals;
2. Transactional DB e.g. Online Transaction Processing

(OLTP) that is primarily used for data maintenance
i.e. insert, update, and delete operations.

Efficient QO strategy is a major task in the archival

DB types. When a DBMS parses a query it decides the
best plan (i.e. strategy) to execute it based on statistics it
retains about DB structure, indexes, and number of
distinct values. Query optimizer is that part of DBMS that
decides which query plan is the best [15]. Relational
systems offer the users access to data via high-level

language and it’s the responsibility of the system to select
efficient plans to execute queries called query evaluation
plans (qeps) [6].

2. Query optimization mechanisms

There are many query optimization mechanisms. The

mechanisms fall into two main categories: hardware
(H/W) and software (S/W). Following is a description of
both:

1. The H/W mechanisms:
Currently DB servers make extensive use of multiple
processors. DB severs use symmetric multi-processor
(SMP) or massive parallel processor (MPP)
technology [20]. Some database Management
Systems (DBMS) make use of these technologies.
DBMS break down a query into parts and process
them in parallel by diffe rent processors. The most
common approach for that is by replicating the query
so each copy works against portion of the DB which
is usually horizontally partitioned [15] [20]. The
same query is to run on each portion in parallel in a
separate processor then intermediate results are
combined to create the final query set as if the query
was running once on the entire DB. A study by [20]
reported that the query time was cut by 50% by using
parallel processing compared to a table scan (T =
TW/P; where T is time, TW is table scan time, and P
number of processors). The same study [20]
indicated that creating an index using parallel
processing was reduced to 5 seconds from nearly 7
minutes.
2. The S/W mechanisms:
Indexing the DB is one of the best and cheapest
methods for improving performance. An index is a
data structure that represents a column stored in a
certain order [7]. DB optimizers scan the appropriate
index to identify any target rows faster than scanning
the entire table. If the table is indexed, a binary
search for files is carried out on the blocks rather
than on the records. A binary search usually accesses
log2 (b) blocks which is considered an improvement
over linear search that is on average accesses (b/2)
blocks when found or b blocks if not found [9].
Caching and physical storage are other two

Query Optimization Techniques for OLAP Applications:
An ORACLE versus MS-SQL Server Comparative Study

 Ahmed El-Ragal Yehia Thabet

Arab Academy For Science and Technology Arab Academy For Science and Technology
College of Management and Technology College of Management and Technology

Management Information Systems department Management Information Systems department
P.O. Box 1029, AASTMT, Miami P.O. Box 1029, AASTMT, Miami

Alexandria, EGYPT Alexandria, EGYPT
aelragal@mis.aast.edu y_thabet@mis.aast.edu

Administrator

Administrator
The Second International Conference on Electronic Business Taipei, Taiwan, December 10-13, 2002

mechanisms through which queries could be
optimized [5] [11] [23].

3. Foundations and assumptions

A DB consists of a number of relations. A relation R
contains attributes att1, att2, …, attn. R is a subset of the
Cartesian product dom(att1) × dom(att2) × dom(attn),
where dom(attj) is a set of values for attj. A tuple ti is an
ordered list of attribute values which has an associated
unique identifier (t_id). An expression e is used to derive
relations and is defined as a group of predicates on some
attributes [5]. The length of an expression is the number
of attributes involved in the expression. Expressions of
length equals 1 are called elementary expressions. For
example, an expression of length 2 is like the following:
 < price ∈ [100,200] ∧ type = ‘local’ >

An expression esub is a sub expression of e if each
elementary expression of esub is included in e and length
(e) > length (esub). An expression e′ is an extension of e
if e is a sub expression of e′ and length (e′) – length (e)
= 1. An expression e′ is a reduction of e if e′ is a sub
expression of e and length (e) – length (e′) = 1. An
expression e′ is a neighbor of e if e′ is an extension of e
or e′ is a reduction of e . A generalization enlarges the
range of an elementary expression, whilst a specialization
reduces the range of an elementary expression [5].

4. Previous work and the research gap

[1] Introduced their query optimization mediator

system on which they made no difference between OLTP
and OLAP applications. Their contribution resulted in a
caching mechanism that allows use of query results of
previous queries in case the source is not readily
available.

[5] Implemented a framework for query optimization
to support data mining applications. The framework
proposed concentrated on two main factors; search
strategies (hill climber, simulated annealing, and genetic
algorithms), and physical DB design.

[6] Proposed a framework for processing a sequence
of interdependent queries for which a multi-query
optimization is required. Their optimization plan
includes: determining on the basis of the dependencies
between queries which order they should be specified and
which results should we store, then each query is passed
separately to the DB optimizer.

[11] Suggested a generalized projections (GP) query
optimization technique. GP captures aggregations, group
by, projections with duplicate elimination, and duplicate
preserving projections. The GP pushes down query trees
for select-project-join queries which use any aggregate
function. The pushing down technique will result in the
removal of tuples and attributes early and consequently

leading to smaller intermediate relations and reducing the
query cost.

[23] Focused on optimizing selection queries using
Bitmaps. For static query optimization, divide the
selection into continuous and discrete ones and suggested
algorithms for evaluating discrete selections using bit-
sliced indexes including time and space constraints.

Reviewing the previous research work-up to our
knowledge- indicates that no efforts have been exerted to
introduce QO strategy for OLAP applications. The main
contribution of this paper is in proposing a novel QO
strategy which will focus mainly on supporting OLAP
applications.

5. On Line Analytical Processing (OLAP)

Although relational database management systems
(RDBMS) are powerful solutions for a wide range of
commercial and scientific applications, they are not
designed to address the multidimensional information
requirements of the modern business analyst, for example
forecasting, and classification [3].

The key driver for the development of OLAP is to
enable the multi-dimensional analysis [19]. Although all
the required information can be formulated using
relational database and accessed via SQL, the two
dimensional relational model of data and SQL have some
serious limitations for investigating complex real world
problems. Also slow response time and SQL functionality
are a source of problems [3]. OLAP is a continuous and
iterative process; an analyst can drill down to see much
more details and then he can obtain answers to complex
questions.

OLAP represents the use of a set of graphical tools
that provides users with multidimensional views of their
data and permits them to analyze the data by utilizing
simple windowing techniques [15]. OLAP refers to DSS
and EIS computing applications [22].

Whilst multidimensionality is the core of a number of
OLAP systems available [19], there is a list of elements
that determine which OLAP product to purchase:
1. Multidimensional conceptual view. The tool must

support users with the level of dimensionality needed
to enable the required analysis to be carried out;

2. Transparency. The heterogeneity of input data
sources should be transparent to the users to prevent
their productivity decreasing;

3. Accessibility. The OLAP system should only access
the data required for analysis;

4. Consistent reporting performance. As the number of
dimensions increases and the database size grows,
users will expect the same level of performance;

5. Client/Server architecture. The OLAP system has to
be compatible with the client/server architectural
principles;

6. Generic dimensionality. Every data dimension should
be in both its structure and operational capabilities;

7. Multi-user support . The OLAP system must be able to
support a multi-user environment;

8. Flexible reporting. The ability to arrange rows,
columns, and cells in a way that facilitates visual
analysis.

Decision makers should prioritize the previous list
elements to reflect their business needs.

Several researchers have stated that OLAP is an
independent technique and is as powerful as the data
mining process and techniques [2] [10] [13]. [19] stated
that in every data mining application the analyst should
expect to find some relationships between the variables
that describe the data set. These expected relationships
need confirmation and any OLAP tool can work well in
either confirming or denying these relationships. Because
of this, OLAP is one of the data mining techniques
applied in the early stages of the data mining process.
However, unlike other data mining techniques, OLAP
does not learn and hence can not search for new solutions
[17] [2].

OLAP involves several basic analytical operations
including consolidation, drill-down and statistical
techniques [17]:
1. Consolidation. Consolidation involves the

aggregation of data, e.g. the total number of students
at the university, total courses, and average GPA;

2. Drill-down. This is the opposite of consolidation and
involves more detailed inspection of the underlying
data, e.g. the break down of the total number of
students into different nationalities that belong to the
different majors with different GPA. Drill-down is
like adding another attribute to the original
report/query [15];

3. Slicing and dicing. Slicing and dicing refers to the
ability to look at the database from different
viewpoints.

6. Query optimization techniques in OLAP
applications

QO for OLAP applications differ from optimizing
queries for OLTP applications in the following areas:
1. OLAP applications are based on data warehouse

which is used for READ type transactions;
2. OLAP applications are characterized by complex

queries;
3. In OLTP voluminous data are processed as soon as

entered;
4. OLAP users are managers and analysts whereas

OLTP users are clerks, professionals (non-
managers);

5. OLAP activities are generating queries, ad hoc
reports, and statistical reports;

6. OLTP are always equipped with SQL, whilst OLAP
front-ends include: DSS, visualization techniques,
and/or data mining techniques [22]. Data mining

refers to the process of nontrivial extraction of
knowledge and discovery of previously unknown
information patters.

Because of the prestated reasons this paper is focused

on designing strategy for optimizing queries running in
OLAP environments. Oracle approach is introduced
followed by MS SQL Server approach, and then the
details of our suggested approach.

6.1 ORACLE approach

Oracle DBMS make use of MPP. Assume that a

SALES relation has many records; therefore query
processing on that relation will be so slow. To make sure
that table scans are executed in parallel using 5
processors:
ALTER TABLE SALES PARALLEL 5;
Another parallel scanning option happens during query
definition.
SELECT /*+ FULL (SALES) PARALLEL (SALES, 5)
/ COUNT ()
FROM SALES
WHERE SALESPERSON = ‘ALY’;

The /* */ indicate hint to Oracle which overrides any
query plan suggested by the optimizer.

In Oracle adjacent secondary memory space may
contain records from various tables with different record
structures [15]. Records from two or more joined
relations may be stored on the same area on disk by
declaring a cluster which is identified by the attribute by
which the relations are already joined. Clustering reduces
the time required to access related records compared to
the normal allocation on various scattered areas on disk.
Example is the following:
CREATE CLUSTER SALE (CLUSTERKEY
(CHAR(10));

CREATE TABLE PRODUCT_TYPE (ID NUMBER
UNIQUE NOT NULL, DESC CHAR(20), NAME
VARCHAR(25), CONSTRAINT PK_PRODT
PRIMARY KEY(ID)) CLUSTER SALE (ID);

CREATE TABLE PRODUCT (CODE NUMBER
UNIQUE NOT NULL, LOCATION CHAR(20), ID
NUMBER, CONSTRAINT PK_PROD PRIMARY
KEY(ID), CONSTRAINT FK_PRODT_P FOREIGN
KEY (ID) REFERENCES PRODUCT_TYPE (ID))
CLUSTER SALE (ID);

Accessing records from the cluster is done via an
index on the cluster key. Clustering records is utilized if
records are static; if frequent data maintenance occurs
clusters create waste space.

An index is a like the structure of a tree that permits
direct access to data records in tables [18]. In Oracle
indexes are classified by their logical and physical

implementation. From the logical implementation point
of view there are:
1. Single column index that has only one attribute in the

index;
2. Concatenated columns index that has composite

columns in the index up to 32 or combined size does
not exceed 1/3 of Oracle data block size;

3. Unique index that guarantees no two rows will have
duplicate values;

4. Nonunique index on which multiple rows exist for
the same value.

From the physical implementation point of view there
are:
1. Partitioned index is utilized with large table to keep

the index entries in several segments which improves
scalability and manageability. Partitioned index is
used with partitioned tables one for each partition
[18];

2. Nonpartitioned index;
3. B-Tree or balanced tree, on top of which there is the

root of the index that has entries which point to the
next level of an index. Next level is a branch blocks
which also point to the blocks at the next level.
Finally, leaf level includes index entries that refer to
rows in tables. Oracle also allows the use of reverse
key index with B-Tree index structure [18]. A
reverse index reverses the bytes of each indexed
column whilst retaining the column order. Reverse
index is useful for queries which have equality
predicates but they never work with range queries.

4. Bitmap index is a table of bits such that a row
represents the distinct values of a key and each
column is a bit which if on implies that the record for
that bit column has the associated value [15]. The
bitmap index is also organized as a tree but the leaf
node stores bitmaps for each value instead of a list of
ROWID’s in B-Tree. Oracle recommends the
utilization of a bitmap index over B-tree in the
following cases:

a. For attributes with low cardinality;
b. The WHERE clause include OR operators;
c. Read-Only of low activity attributes.

Table (1): Bitmap index

Row
ID

Value B7 B6 B5 B4 B3 B2

1 3 0 0 0 0 1 0
2 4 0 0 0 1 0 0
3 5 0 0 1 0 0 0
4 4 0 0 0 1 0 0
5 6 0 1 0 0 0 0
6 7 1 0 0 0 0 0
7 3 0 0 0 0 1 0
8 2 0 0 0 0 0 1
9 6 0 1 0 0 0 0
10 5 0 0 1 0 0 0

In a very simple form, bitmap index of an attribute is

one vector of bits per attribute value, where the size of
each bitmap is equal to the cardinality of the indexed

relation. Bitmaps are encoded such that the ith record of v
value in an indexed attribute iff the ith bit in the bitmap
associated with the attribute value v is set to 1 and the ith
bit for the other bitmaps are set to 0 [4]. Table 1 provides
an example.

Bitmap indexes have been implemented in many
DBMS including Oracle, Sybase, and Informix. A major
advantage of bitmap index is that bitmap manipulations
uses bit-wise operators (AND, OR, XOR, NOT) are
efficiently supported by hardware.

Oracle depends on two QO approaches: rule-based,
and cost-based [12]. The rule-based optimizer ranks the
qeps by ranking their possible different paths according
to the speed of executing each path. It ignores the table
size and the distribution of data. This means that the rule
based optimizer will always choose to use an index on a
small table even though table scan could be more
efficient.

The cost-based optimizer depends on the available
access paths and statistics stored in the data dictionary
e.g. number of rows and cardinality of a table to decide
which access path is of least cost. The following
statement analyzes the relation student, views could also
be analyzed.
ANALYZE TABLE STUDENT COMPUTE
STATISTICS;

Use of the analyze command is done whenever

changes made to the DB to ensure that the DB optimizer
depends on the most updated contents. Oracle
recommends running the ANALYZE command after
each data load, and before creating summary table in data
warehouses [12].

Join is also optimized in Oracle by choosing the best
method for doing the join. A join operation combines
tuples from two or more relations based on common
attributes (i.e. join condition). The Oracle QO chooses the
best join method of the following (sort-merge join, nested
loop join, hash join, partition wise join) for more details
on join methods refer to [9] [12]. For star queries, each
dimension is joined to the fact using the primary key-
foreign key relationships. Oracle QO uses bitmap index
to retrieve rows from the fact then the result is then join
to the dimension tables, instead of computing the
Cartesian product of the dimensions. Oracle recommends
creating a bitmap index on every attribute on the fact
table [12].

6.2 MS-SQL Server approach

SQL server 2000 uses memory for its stored

procedures, ad hoc and prepared Transact-SQL
statements, and triggers. The most significant limitation
to SQL server is disk I/O; however, utilizing memory will
maximize the advantages of caching and minimize
memory swapping.

Memory and lock management are both managed by

SQL server not the DB administrator (DBA), the server
allocates buffers from the available system memory and
releases them when not required [7]. This is also true for
the locks, SQL server allocates and releases locks based
on the activity level and the expected usage queries will
make of the data.

MS SQL supports two index types; clustered and
nonclustered to enhance the fast return of result sets [16].
Without indexes a query forces SQL Server to scan the
entire table to find matches. A DB index contains one or
more column values from tables and pointers to the
corresponding record. When performing a query QO uses
an index to locate matching records. MS SQL server uses
B-Tree structures to store both index types. Microsoft
recommends creating index on columns that are
frequently used in queries. For instance, query optimizer
will use reg_no index to process the following query:
SELECT * FROM STUDENT WHERE REG_NO =
1000;

Creating index on every column in the DB tables will
negatively affect performance [16]. Insert, Update, or
Delete transactions will trigger the index manager to
update the table indexes.

Clustered index contains table records in the leaf node
of the B-Tree structure. There is only one clustered index
per table. When creating PK constraint in a table without
clustered index, SQL Server creates clustered index on
the PK column, if a clustered index already exist a
nonclustered index is created. An attribute defined as
unique automatically creates nonclustered index. On most
situations, clustered indexes are created before
nonclustered. Index information is obtained by the
following statement:

SP_HELPINDEX STUDENT

Following is a create index example in MS SQL Server:

CREATE UNIQUE CLUSTERED INDEX INDEX_1
ON STUDENT(NAME, GPA DESC)
WITH FILLFACTOR = 60

The fill factor sets up the index so that the leaf node
index pages are 40% full, leaving 60% space to include
additional key entries.

If a clustered index exists (on table or view) any
nonclustered index on the same object uses it as their
index key [16]. Dropping a clustered index by the DROP
INDEX causes all nonclustered to be rebuilt so they use
RID as a bookmark. In case the clustered index is re-
created using CREATE INDEX all nonclustered indexes
are rebuilt to refer to the clustered index rather than RID.

 DBCC DBREINDEX (STUDENT, REG_NO, 60)

6.3 MS® SQL Server™ data retrieval policy

SQL Server language is able to filter data at the server

so that only the minimum data required is returned to
clients which will minimize expensive Client/Server
network traffic.

This means that WHERE clauses must be restrictive
enough to retrieve only the data that is required by the
application. It is always more efficient to filter data at the
server than to send it to the client and filter it in the
application (this applies to columns). An application
issues SELECT * FROM... statement which requires the
server to return all column data to the client, whether or
not the client application has bound these columns for use
in program variables. Selecting only the necessary
columns by name avoids high network traffic.

This also makes your application more robust in the

event of table definition changes, because newly added
columns are not returned to the client application.
Moreover, performance depends on how the application
requests a result set from the server. An application based
on Open Database Connectivity (ODBC), statement
options set prior to executing a query to determine how
the application requests a data set from the server. By
default, MS® SQL Server™ 2000 sends the data set the
most efficient way.

MS SQL Server assumes that an application will fetch

all rows from a default result set immediately. Therefore,
an application must buffer any rows that are not used
immediately but could be needed later. This buffering
requirement makes it necessary for you to specify (using
Transact-SQL) only the data needed.

Query analyzer is a graphical tool in SQL Server that
provides information about queries in nodes; each node
represents a step in the query to execute [8]. For instance,
a SELECT statement shows the following information:
a. Estimated number of rows returned by the statement;
b. Estimated size of rows;
c. Estimated I/O cost;
d. Estimated CPU cost;
e. The number of times the statement was executed

during running the query.

6.4 Comparative techniques: ORACLE versus

MS-SQL

The following table (20) 1 summarizes the differences
between Oracle and MS SQL with regard to QO.

1 Adapted from [21].

Table (2): Oracle vs. MS SQL Server

Feature Oracle MS SQL
Indexing
options

B-Tree and
Bitmap index
structures
Reverse key
index

B-Tree only

Partitioning Range, Hash,
List and
composite
partitioning

Cube
partitioning
DB portioning
and file groups

Self-tuning Self-tuning
memory, free
space, I/O
management

Memory
management,
lock
management

Smart
advisors

Memory wizard
MTTR advisor
Summary
advisor
Virtual index
advisor

Cube wizard
Query
analyzer

Others Star Schema Star Schema
and Snowflake
designs

It is not the intension of this paper to say which of the

Servers (i.e. Oracle and MS SQL) outperforms the other,
instead to review the QO approaches in both Servers and
introduce an integrated suggested approach QO approach
for OLAP applications. However, reviewing both servers’
mechanisms is useful for people who intent to develop
OLAP applications and are not aware of the details of QO
supported by each server.

7. Suggested QO approach for OLAP

applications

Our QO suggested approach for OLAP applications
includes:
1. The use of intermediate queries. The following

procedure is proposed:
- As a new query (qn) is processed, it is compared

to the previous queries in cache;
- If there is no attribute intersection between qn

and the previous queries then qn is processed
from scratch;

- If there is intersection between qn and a previous
query qm then:

o If same operator exist:
§ E.g. qn : AGE > 10, qm : AGE >

20. Then finding tuples that
satisfy AGE between 11 and 20
then the result Union AGE > 20
from cache.

§ E.g. qn : AGE > 20, qm : AGE >
10. Then finding tuples that
satisfy AGE greater than 20 as a
subset of cache.

o If different operators:
§ E.g. qn : AGE > 10, qm : AGE <

15. Then find the intersection
between the two queries (i.e. 11,
12, 13, 14) from cache, then find
tuples that satisfy AGE >= 15
and Union them.

- If there is intersection between qn and more than
one previous query qm , qj , ql then process the
new query qn with the one with which it has the
highest selectivity (n/N; where n is the number
of records selected and N is the total number of
records in a relation).

2. The use of indexes both B-Trees and Bitmap where

relevant. Following is a B tree versus Bitmap
comparison which helps determines when to use
each of which:

Table (3): B -tree vs Bitmap [Adapted from [18]]
B-tree Bitmap

High cardinality
attributes

Low cardinality
attributes

Inexpensive updates Expensive
Inefficient for OR
queries

Efficient for OR
queries

OLTP OLAP
3. The use of memory cache (for the syntax of the

query), and secondary storage cache (for the result
data set).

4. Physical DB storage and its hardware solution.
Points 3, and 4 of the suggested QO approach are
explained in the following sections.

7.1 Pointer-based Binary Storage Model “BSM”

The idea of the binary storage model is to store each

attribute with a unique location identifier in a separate
table. In [5] if a non-elementary expression is processed
each attribute is accessed with its physical address. We
propose a modified Binary storage model called Pointer-
Based binary storage model. In this model we have to
specify the origin table “Table that contains the primary
key” This table contains the primary key and a number of
pointers equal to n-1 where n is the number of columns in
the virtual table including the primary key. The following
example shows the proposed modeling technique.

Example. Consider the following student relation (i.e.
table):

Table (4): Student table
Student
ID

Student
Name

Student
GPA

Student
AGE

91131911 Ahmed 2.5 25
95176112 Yehia 2.97 24
98117611 Mohamed 3.68 26
99876511 Ali 3.92 21

We name the last shown table structure ‘virtual table
structure’ as it is stored in a different way than it appears
to the user.

7.2 Physical Structure :

Each column will be stored in a table with a pointer

that points to the original location.
 Student Column

Table (5): Physical structure
Physical
Location

Student ID
Physical Location

Student
Name

3000 1101 Ahmed
3001 1305 Ali
3002 2107 Mohamed
3003 908 Yehia

.
GPA column

Table (6): Physical structure-1
Physical
Location

Student ID
Physical Location

GPA

4000 1305 2.5
4001 2107 2.97
4002 1101 3.68
4003 908 3.92

AGE column

Table (7): Physical structure-2
Physical
Location

Student ID
Physical Location

AGE

5000 1305 21
5001 2107 26
5002 1101 25
5003 908 24

Student Original Table

Table (8): Student Original table
Physical
Location

Student
ID

Name
Physical
Location

Age
Physical
Location

GPA
Physical
Location

908 91131911 3003 5003 4003
1101 99876511 3000 5002 4002
1305 98117611 3001 5000 4000
2107 95176112 3002 5001 4001

Suppose that we want to execute the following query:
SELECT * FROM STUDENT WHERE GPA > 2.5

In this case we will search in the GPA table which is

sorted, so binary search will be suitable to be applied.
After determining the set of tuples that match the
selection criterion data tuples are retrieved from the
origin table that are stored in physical locations similar to
those stored in the pointer attribute.
After determining those tuples data is retrieved from the
rest of tables as shown:

Table (9): Results
Student ID Physical Location GPA
2107 2.97
1101 3.68
908 3.92

Then data exist in physical locations are retrieved from
Original table.

Table (10): Source table
Physical
Location

Student
ID

Name
Physical
Location

Age
Physical
Location

GPA
Physical
Location

908 91131911 3003 5003 4003
1101 99876511 3000 5002 4002
2107 95176112 3002 5001 4001

And then data is retrieved from the locations appear in
table.
The above algorithm seems to have considerable cost. In
fact this is not true because this pointer point to the
physical location so there is no search after retrieving the
original table selected rows.

7.3 Proposed H/W architecture to speed up
search

Figure (1): Suggested H/W architecture

The previous Architecture works as follows:

The Attij is feed to the network with the selected
criteria, if the where operator is > then W1, W2 equal -
1,1 respectively. if the where operator is < then W1,W2
equal 1,-1 respectively. If it is equal then both
assumptions are valid.

The activation function is the inverse of the bipolar
function. It is defined by:





>=
<

=
00

01
)(

ifx
ifx

xf (1)

The output of the neuron is feed to a tri-State device in
order to either output zero and that means there is no
match or outputs the physical address in case of match.

Attij

?

Select
Criterion

Original table
Physical Address

W1 W2

Note that VLSI (very large scale integrated circuits)
technology allows the integration of huge number of
replicates of this architecture in one chip. And so parallel
processing for the query is achievable.
Assumptions and constraints:
1. For the technique to be efficient, each table has to be

sorted in order to achieve efficient data retrieval
“binary search”. Note that we don’t need to use B-
tree algorithm as it is too costly for a sorted table.

2. Each group of tables constituting a virtual table must
be stored in the same cluster in order to speed up the
operation.

7.4 Query Result Cashing

Query cashing process is divided into two sub tasks

“memory cash and secondary storage cash”. We cash the
query semantics and its native language transformation
into memory whilst the results of the query are cashed in
secondary storage i.e. hard-disk.

Since the storage media is limited in space, it is

required to develop a replacement technique in order to
replace existing queries by newer ones. In this paper we
offer a priority-based technique that is based on the
following mathematical equation:

QIP = B(Qi) + H(Qi)

Where QIP is the priority of the query number I.

Whenever a new query is executed, it is cashed on disk
and it is given a starting value B(Qi) where B(Qi) is a
function that retrieves the base value of the priority and it
is calculated as follows:

 )Pr()(ioritiesQueryAvgQiB =

and H(Qi) is a function that represents the Query Hit
Ratio which initially equals 0. Query Hit Ratio is the
number of times this query has been used to answer
another query.

Note that we formulated QIP to include B(Qi) in order

to give a fair chance for new queries to remain cashed.
That is why we do not consider B(Qi) a part of the Exact
QIP Value so each time a new query is cashed the
function B(Qi) is decremented by 1 for all queries until it
reaches 0. Note That If Q2 is a specification to Q1 and
Q1 is cashed then Q2 is not cashed.

Cash Modification:
Any cashed Query that can be considered as an extension
of any other cashed query must be removed.

8. Conclusion
o Indexes, memory caches, portioning, clustering,

hardware solutions (e.g. parallel processing) are all
mechanisms to optimize query performance;

o Query optimization for OLTP applications is
different from QO for OLAP applications;

o Bitmaps are common indexes for OLAP
applications;

o Both MS SQL and Oracle Servers support optimize
queries differently;

o A suggested QO strategy for OLAP applications
should include the following components:

o Intermediate queries;
o Indexes both B-Trees and Bitmaps;
o Memory cache (for the syntax of the query)

and secondary storage cache (for the result
data set);

o The physical database storage (i.e. binary
storage model) accompanied by its
hardware solution.

9. Future work

o Implementing the suggested QO approach for OLAP

applications in ORACLE. The reasons for which we
did not implement our suggested approach in a case
study are the following:

o It is very hard to communicate with the
DBMS’ query optimizers;

o Some DBMS (e.g. MS SQL) do not support
some of the suggested techniques like
bitmap indexes;

o It is costly to implement the suggested
hardware (H/W) solution using VLSI (very
large scale integrated circuits). But this does
not mean that the H/W solution is
infeasible, it is feasible for large
organizations who store millions of records;

o Dumping the cached queries from memory
and secondary storage requires adding new
module to the existing DBMS.

o Handling sub queries by using heuristics to
determine which intermediate queries to retain.

References

[1] Adali, S., Candan, K., Papakonstantion, Y., and
Subrahmanian, V. (1996), Query caching and
optimization in distributed mediator systems,
proceedings of SIGMOD 1996, pp.137-148.
[2] Adriaans, P., and Zantinge, D. (1996), Data Mining ,
Addison Wesley Longman Limited, Harlow.
[3] Berson, A. (1996), Client/Server Architecture,
McGraw-Hill, New York.
[4] Chan, C., and Ioannidis, Y. (1999), Bitmap index
design and evaluation, technical report, department of
Computer Science, Wisconsin-Madison University.
[5] Choenni, S., and Siebes, A. (1996). ‘A framework for
query optimization to support data mining’, CWI,
Amsterdam.
[6] Choenni, S., Kersten, M., Van den Akker, J., and
Saad, A. (1996). ‘On multi-query optimization’, CWI,
Amsterdam.
[7] Craig, R. (1999). ‘Performance Management’, ENT,
July vol. 4: 13, pp.41.

[8] Craig, R., Vivona, J., and Bercovitch, D. (1999),
Microsoft Data Warehousing: Building Distributed
Decision Support Systems, John Wiley & Sons Inc., New
York.
[9] Elmasri, R., and Navathe, S. B. (2000),
Fundamentals of Database Systems, 3rd ed., Addison
Wesley, Massachusetts.
[10] Fayyad, U., Piatetsky, G., and Smyth, P. (1996),
‘From Data Mining To Knowledge Discovery: An
Overview’, In Fayyad, U., Piatetsky, G., and Smyth, P.
(Eds), Advances In Knowledge Discovery And Data
Mining , AAAI Press/ The MIT Press, California, pp. 1-
34.
[11] Harinarayan, V., and Gupta, A. (1997), Generalized
Projections: a powerful query-optimization technique,
technical report, department of Computer Science,
Stanford University.
[12] Hobbs, L., and Hillson, S., (2000), Oracle 8i Data
Warehousing , Digital Press, Boston.
[13] Laudon, K., and Laudon, J., P. (2001), Essentials of
Management Information Systems: Organization and
Technology in the Networked Enterprise, 4th ed.,
Prentice Hall International, Inc., New Jersey.
[14] MCDBA SQL Server 7.0 Administration Study
Guide, (1999). Osborne McGraw-Hill, California.
[15] McFadden, F., Hoffer, J., and Prescott, M. (1999).
Modern Database Management , 5th ed., Addison
Weslley, Massachusetts.
[16] Microsoft SQL Server 2000 Database Design and
Implementation training kit (2001). Microsoft press,
Washington.
[17] O’brien, J. (1996), ‘Introduction to Information
Systems’ , Irwin, Chicago.
[18]ORACLE 8: Database Administration volume 2
(1998). Oracle University, California.
[19] Pyle, D. (1999), Data Preparation For Data
Mining, Morgan Kaufmann Publishers, Inc., California.
[20] Schumacher, R. (1997). ‘Oracle Performance
Strategies’, DBMS 10, (May): pp.89-93.
[21] Technical Comparison of Oracle Database vs. IBM
DB2 UDB: Focus on Performance (2002). An Oracle
white paper.
[22] Turban, E., and Aronson, J. (1998), Decision
Support Systems and Intelligent Systems, 5th ed.,
Prentice Hall, New Jersey.
[23] Wu, M. (1998), Query Optimization for Selections
using Bitmaps, Germany.

