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Abstract 

In general, several types of information data are 
transmitted through an E-Commerce network 
simultaneously. Each type of information data is set to 
one type of commodity. Under the budget constraint, this 
paper studies the probability that a given amount of 
multicommodity can be transmitted through an 
E-Commerce network, where each node and each arc has 
several possible capacities. We may take this probability 
as a performance index for this network. Based on the 
properties of minimal paths, a simple algorithm is 
proposed to generate all lower boundary points for 
(d1,d2,…,dp ;C) where d i  is the demand of commodity i 
and C is the budget. The probability can then be 
calculated in terms of such points. 
 
1. Introduction 

The capacity of each arc (the maximum flow 
passing the arc per unit time) in a binary-state flow 
network has two levels, 0 and a positive integer. For 
perfect nodes case, Aggarwal et al. [1] computed the 
system reliability, the probability that the maximum flow 
of the network is not less than the demand, in terms of 
minimal paths (MPs). A MP is an ordered sequence of 
arcs from the source s to the sink t that has no cycle. Lee 
et al. [10] and Rueger [15] extended the system reliability 
problem to the case that nodes and arcs have a 
positive-integer capacity and may fail. A stochastic-flow 
network is a multi-state network in which each arc has 
several states or capacities. The system reliability is the 
probability that the maximum flow of single-commodity 
through the network is not less than the demand d. 
Without the budget constraint, several authors 
[11,12,14,19,21] had presented algorithms to generate 
lower boundary points for d in order to evaluate the 
system reliability for perfect node case. Lin [13] and Yeh 
[22] extended the problem to the more general case that 
nodes have several capacities as arcs do. 

However, in real world, many stochastic-flow 
networks allow multicommodity to be transmitted from s 
to t simultaneously. Assuming the flow network is 
deterministic (i.e., the capacity of each arc is a constant), 
many authors [3,4,8,17,18] studied the multicommodity 
minimum cost flow problem, which is to minimize the 
total cost of multicommodity. The purpose of this paper is 
to extend the system reliability problem to a 

multicommodity case, named multicommodity reliability 
here, for a stochastic-flow network with node failure 
under budget constraint. Then a MP is an ordered 
sequence of arcs and nodes from s to t that has no cycle. 
The system reliability is the probability that the given 
demand (d1,d 2,…,dp) can be transmitted through the 
stochastic-flow network under budget C, where dk , k = 1, 
2, …, p, is the required demand of commodity k. A 
simple algorithm is proposed to generate all lower 
boundary points for (d1,d 2,…,dp;C), then the 
multicommodity reliability can be computed in terms of 
all lower boundary points for (d1,d 2,…,dp;C).  

 
2. Multicommodity Model Under Budget 
Constraint 

G = (A, N, M) is a stochastic-flow network with 
source s and sink t where A = {ai|1 ≤ i ≤ n} the set of arcs, 
N = {ai|n + 1 ≤ i ≤ n + r} the set of nodes and M = (M1, 
M2, …, Mn + r) with Mi the maximal capacity of ai. Let xi 
denote the (current) capacity of ai, and it takes values 
from {0, 1, 2, …, Mi} with a given probability 
distribution. 
 
2.1 Assumptions and Nomenclature 

1. All commodities are transmitted from s to t. 
2. The capacities of different arcs are statistically 

independent. 
x the smallest integer such that x ≥ x 
Y ≥ X  (y1, y2, …, yn + r) ≤ (x1, x2, …, xn + r) if and only if 

yi ≥ xi for i = 1, 2, ..., n + r 
Y > X  (y1, y2, …, yn + r) > (x1, x2, …, xn + r) if and only if 

Y ≥ X and yi > xi for at least one i 
 
2.2 Multicommodity Flow 

Suppose P1, P2, …, Pm are MPs form s to t. The 
multicommodity flow model for G is described in terms 
of the capacity vector X = (x1, x2, …, xn + r) and the flow 
assignment (F1, F2,…, Fp), where Fk  = ( k

m
kk fff ,...,, 21 ) 

with k
jf  denoting the flow (integer-value) of commodity 

k through Pj, j = 1, 2, …, m, k = 1, 2, …, p. Such an (F1, 
F2,…, Fp) which is feasible under X satisfies the 
following condition: 
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where k

iϖ  (real number) is the weight of commodity k 
on ai i.e., the consumed amount of capacity on ai per 
commodity k. For convenience, let φX denote the set of 
(F1, F2,…, Fp) feasible under X. Similarly, (F1, F2,…, Fp) 
∈ φM if it satisfies 
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Let k

ic  denote the transportation cost of each 
commodity k through ai. Under X, the network G satisfies 
the given demand (d1,d 2,…,dp) under the budget C if 
there exists an (F1, F2,…, Fp) ∈ φX satisfying constraints 
(3) and (4); 
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Let Ω = {X| there exists an (F1, F2,…, Fp) ∈ φX satisfying 
constraints (3) and (4)}. The multicommodity reliability 

Cddd pR
;,...,, 21

 is thus 

 

Cddd pR ;,...,, 21
= Pr{Ω} = ∑ Ω∈X

X}Pr{  

 
Each minimal one in Ω is named a lower boundary point 
for (d1,d 2,…,dp;C) throughout this paper i.e., X is a lower 
boundary point for (d1,d 2,…,dp;C) if and only if i) X ∈ Ω 
and ii) Y ∉ Ω for any capacity vector Y such that Y < X. 
Hence,  
 

Cddd pR
;,...,, 21

= Pr{Y|Y ≥ X for a lower boundary point for 

(d1,d 2,…,dp;C) X}. 
 
2.3 Generate All Lower Boundary Points for 

(d1,d2,…,dp;C) 

Let Φ = {(F1, F2,…, Fp)| (F1, F2,…, Fp) satisfies 
constraints (2) - (4)}. For each (F1, F2,…, Fp) ∈ Φ, 
generate the capacity vector pFFF

Z
,...,, 21 = (z1, z2, …, zn+r) 

via 

zi = 
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For convenience, let Ψ = {

pFFFZ ,...,, 21
|(F1, F2,…, Fp) ∈ Φ}. 

We will first see that Ψ contains all lower boundary 
points for (d1,d 2,…,dp;C) in the following lemma. 

 
Lemma 1. Let X be a lower boundary point for 
(d1,d 2,…,dp;C). Then X = pFFF

Z
,...,, 21  for each (F1, 

F2,…, Fp) ∈ φX ∩ Φ. 
Proof: For each (F1, F2,…, Fp) ∈ φX ∩ Φ, constraint (1) 
says that pFFFZ ,...,, 21  ≤ X. Suppose that 

pFFFZ ,...,, 21
< X, 

then pFFF
Z

,...,, 21 ∉ Ω as X is minimal in Ω. This is a 

contradiction. Hence, X =
pFFFZ ,...,, 21
. 

 
The following lemma further shows that Ψmin ≡ 

{X|X is minimal in Ψ} is the set of lower boundary point 
for (d1,d 2,…,dp;C). 
Lemma 2. {X|X is a lower boundary point for 
(d1,d 2,…,dp;C)} = Ψmin. 
Proof: Firstly, suppose that X is a lower boundary point 
for (d1,d 2,…,dp;C) (note that X ∈ Ψ by lemma 1) but X ∉ 
Ψmin i.e., there exist a Y ∈ Ψ such that Y < X. Then Y ∈ Ω, 
which contradicts to that X is a lower boundary point for 
(d1,d 2,…,dp;C). Hence, X ∈ Ψmin. 

Conversely, suppose that X ∈ Ψmin (note that X ∈ 
Ω) but it is not a lower boundary point for (d1,d 2,…,dp;C). 
Then there exists a lower boundary point for 
(d1,d 2,…,dp;C) Y s.t. Y < X. By lemma 1, Y ∈ Ψ that 
contradicts to that X∈Ψmin. Hence, X is a lower boundary 
point for (d1,d 2,…,dp;C). 

 
 

3. Algorithm 

As those approaches of [11,13,14,19,21,22] we 
suppose all MPs have been pre-computed. Minimal paths 
can be efficiently derived from those algorithms 
discussed in [2,9,16]. The algorithm of Al-Ghanim [2] 
showed an approximate linear time response versus the 
number of network nodes. Kobayashi and Yamamoto [9] 
showed that to generate all minimal paths for a random 
network with 30 nodes and 100 arcs takes no more than 
1300 seconds. 
Step 1. Obtain all (F1, F2,…, Fp) with Fk  = 

( k
m

kk fff ,...,, 21 ), k = 1, 2, …, p, of the following 
constraints: 
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Step 2. Transform each (F1, F2,…, Fp) into X = (x1, x2, …, 

xn+r) according to 



xi = 
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Step 3. Suppose Ψ = {X 1, X 2, …, X v}. 

3.1) I = φ (I is the stack which stores the index 
of each non-minimal X after checking. 
Initially, I = φ.) 

3.2) For i = 1 To v and i∉I 
3.3) For j = i + 1 To v with j∉I 
3.4) If X i ≥ X j, I = I ∪ {i} and go to step 3.7) 

Elseif X j > X i, I = I ∪ {j} 
3.5) j = j + 1 
3.6) X i is a lower boundary point for 

(d1,d 2,…,dp;C) 
3.7) i = i + 1 
3.8) End. 

 
4. A numerical example 

 

 

 

 

 

Figure 1. A benchmark [14,20] 

 

We use the benchmark [14,20] in Figure 1 to 
illustrate the proposed approach. There are 7 MPs: P1 = 
{a13, a1, a9, a3, a11, a7, a14}, P2 = {a13, a1, a9, a3, a11, a6, 
a12, a8, a14}, P3 = {a13, a1, a9, a4, a12, a8, a14}, P4 = {a13, 
a1, a9, a4, a12, a6, a11, a7, a14}, P5 = {a13, a2, a10, a5, a12, a8, 
a14}, P6 = {a13, a2, a10, a5, a12, a6, a11, a7, a14} and P7 = 
{a13, a2, a10, a5, a12, a4, a9, a3, a11, a7, a14}. The data of 
arcs and nodes for 2-commodity case are shown in Table 
1. We assume the source and the sink both have infinite 
capacity and are perfect. If the demand (d1, d2) is set to be 
(3,3) and C = 810 US dollars, then the multicommodity 
reliability R3,3;810 can be calculated by the following steps. 
Step 1. Obtain all F1 = ( 1

7
1

6
1

5
1

4
1

3
1

2
1

1 ,,,,,, fffffff ), and 

F2 = ( ,,,,, 2
5

2
4

2
3

2
2

2
1 fffff 2

7
2

6 , ff ) of the following 
integer-programming: 
(9)  a1:  ++++++ 2

2
2

1
1

4
1

3
1

2
1

1 22 ffffff  
2

4
2

3 22 ff +  ≤ 5 

a2:  2
7

2
6

2
5

1
7

1
6

1
5 222 ffffff +++++  ≤ 5 

a3:  2
7

2
2

2
1

1
7

1
2

1
1 222 ffffff +++++  ≤ 5 

a4:  2
7

2
4

2
3

1
7

1
4

1
3 222 ffffff +++++  ≤ 5 

a5:  2
7

2
6

2
5

1
7

1
6

1
5 222 ffffff +++++  ≤ 5 

a6:  2
6

2
4

2
2

1
6

1
4

1
2 222 ffffff +++++  ≤ 5 

a7:  2
4

2
1

1
7

1
6

1
4

1
1 22 ffffff +++++ + 

2
7

2
6 22 ff +  ≤ 5 

a8:  2
5

2
3

2
2

1
5

1
3

1
2 222 ffffff +++++  ≤ 5 

a9:  ++++++ 2
1

1
7

1
4

1
3
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2

1
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2
7
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2
72... f+  ≤ 9 
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2
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7

1
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7
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2
2 ... fff +++ )} 

≤ 810 
 
Seven (F1, F2) are obtained: (3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 
2, 0, 0), (2, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0), (2, 0, 0, 0, 1, 
0, 0, 1, 0, 0, 0, 2, 0, 0), (1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 0, 
0), (0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 3, 0, 0, 
2, 0, 0, 0, 1, 0, 0) and (0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 1, 0, 0). 
And the corresponding costs are 790, 790, 780, 780, 780, 
770 and 810, respectively. 
 
Step 2. Transform all (F1, F2) into X = (x1 ,  x 2 ,  … ,  x12) 
according to  
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We obtain X 1 = (5, 4, 5, 0, 4, 0, 5, 4, 5, 4, 5, 4), X 2 = (5, 4, 
4, 1, 4, 0, 4, 5, 5, 4, 4, 5), X 3 = (4, 5, 4, 0, 5, 0, 4, 5, 4, 5, 
4, 5), X 4 = (5, 4, 5, 0, 4, 0, 5, 4, 5, 4, 5, 4), X 5 = (5, 4, 4, 1, 
4, 0, 4, 5, 5, 4, 4, 5), X 6 = (4, 5, 4, 0, 5, 0, 4, 5, 4, 5, 4, 5) 
and X 7 = (4, 5, 4, 0, 5, 1, 5, 4, 4, 5, 5, 5). 
 
Step 3. Check each Xi whether it is a lower boundary 
point for (3,3;810) or not. 
3.1) I = φ 
3.2) i = 1 
3.3) j = 2 
3.4) X 1 ≥/  X 2 and X 2 >/  X 1. I = {φ}. 
3.3) j = 3 
3.4) X 1 ≥/  X 3 and X 3 >/  X 1. I = {φ}. 
3.5) j = 4 
3.4) X 1 ≥ X 4. I = {1}. 
3.2) i = 2 
M 

After further checking, X 4, X 5, X 6 and X 7 are all 
lower boundary points for (3,3;810). Let B1 = {X|X ≥ X4}, 
B2 = {X|X ≥ X5}, B3 = {X|X ≥ X6} and B4 = {X|X ≥ X7}. 
Hence, the multicommodity reliability R3,3;810 = Pr{B1 ∪ 
B2 ∪ B3 ∪ B4} = 0.61623376 can be computed by the 
inclusion-exclusion method. 
 
5. Conclusions 

This article extends the system reliability problem 
to the multicommodity reliability for a stochastic-flow 
network with node failure under budget constraint. The 
multicommodity reliability is the probability that the 
demand (d1,d 2,…,dp) can be transmitted through the 
stochastic-flow network under budget C. Based on the 
properties of minimal paths, we propose a simple 
algorithm to generate all lower boundary point for 
(d1,d 2,…,dp;C). Then the multicommodity reliability can 
be calculated in terms of lower boundary points for 

(d1,d 2,…,dp;C) by applying the inclusion-exclusion 
method. In our model the transportation cost k

ic  is not 
assumed to be linear in k

iϖ . The main reason is that the 
transportation cost is not only dependent on the 
dimension of commodity but also on other attributes of 
commodity. For example, poison, vulnerable, fragile, etc. 
For the case that the transportation cost is only charged in 
terms of consumed capacity, k

ic  is linear in k
iϖ . 

However, this condition is a special case of the proposed 
model. 
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Table 1. The data of arcs and nodes for 
2-commodity example 

Arc Capacity Probability 1
iϖ  2

iϖ  1
ic  

(US 
dollar)

2
ic  

(US 
dollar)

a1 0* .01 1 2 10 20 
 1 .01     
 2 .01     
 3 .02     
 4 .02     
 5 .93     

a2 0 .01 1 2 20 30 
 1 .01     
 2 .02     
 3 .03     
 4 .03     
 5 .90     

a3 0 .01 1 2 30 40 
 1 .01     
 2 .01     
 3 .02     
 4 .02     
 5 .93     

a4 0 .01 1 2 20 40 
 1 .01     
 2 .02     
 3 .03     
 4 .03     
 5 .90     

a5 0 .01 1 2 10 20 
 1 .01     
 2 .01     
 3 .02     
 4 .02     
 5 .93     

a6 0 .01 1 2 20 30 
 1 .01     
 2 .02     
 3 .03     
 4 .03     
 5 .90     

a7 0 .01 1 2 30 40 
 1 .01     
 2 .01     
 3 .02     
 4 .02     
 5 .93     

a8 0 .01 1 2 20 40 
 1 .01     
 2 .02     
 3 .03     
 4 .03     
 5 .90     

a9 ~ 0 .01 1 2 20 30 
a12 1 .01     

 3 .01     
 5 .01     
 7 .02     
 9 .94     

*Pr{the capacity of a1 is 0} = 0.01.  




