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Abstract 
 
Parallel Genetic Algorithms (PGAs) were used to 

simultaneously optimize the structure and weights for 
feedforward neural networks. Aiming at its large-scale 
application in common distributed network system, a 
concentrative coarse-grained model for parallel 
evolutionary neural networks is designed and realized in 
a laboratorial distributed computation environment, and 
the initial results of experiments indicate that the parallel 
model can quicken the searching process and improve the 
evolutionary efficiency. For the parallel characteristics, 
this method can analyze massive information during the 
process of e-business. Several application scopes of this 
method in e-business are discussed also in this paper . 
Key words Parallel Evolutionary Neural Networks; 
Distributed computation; E-business 

1. Introduction 

The application of Artificial Neural Networks 
(ANNs) has been extended to many areas in recent years. 
Common practices are usually involved with using back 
propagation (BP) algorithms on structure-predefined 
full-connected feed-forward neural networks for 
connection weights adjustment. Unfortunately such 
training is often time-consuming, especially for 
large-scale problem, and user-dependent for ANNs’ 
architecture definition, which is crucial to the training 
process, while still a difficult decision, without optimum 
rules to follow. 

Evolutionary Neural Networks (ENNs) provide a 
prominent alternative neural-network training method. 
They take advantage of evolutionary algorithms’ (EAs) 
global searching ability, not only automatically optimize 
ANNs’ architecture according to particular tasks, but also 
dynamically improve ANNs’ generalization performance. 
However, when encountered with large-scale problem, 
ENNs also suffer from considerable computation expense 
due to complex network architecture.  

Parallel Evolutionary Neural Networks (PENNs) 
have the potential to find fittest ANNs in significantly 
less time than serial ENNs. Aiming at PENNs’ extensive 
application in common distributed computer network, we 
have been devoted to the analysis, design and 
implementation of parallel algorithms in distributed 

computation environments, compared to numerous 
studies in multi-processor workstations.  

In this paper, we introduce a kind of parallel model 
specially designed for PENN in distributed system, on the 
basis of which a parallel evolutionary algorithm is 
realized to optimize the architecture and weights of 
feed-forward neural networks simultaneously. 

As we know, the most popular evolutionary 
algorithm used in ENNs is Genetic Algorithms (GAs). 
There are generally three kinds of evolution in GA-based 
ENN, i.e., the evolution of connection weights, of 
architectures and of learning rules, according to the level 
to which evolutionary search procedures come into 
ANNs[1]. If the learning rules are pre-defined and fixed, 
the main procedures of the two kinds of evolution are so 
similar that we can combine them into one evolutionary 
algorithm, which will be described later. 
 A successful design of ENN requires careful 
consideration about several crucial aspects[2]: 
1) Encoding Scheme 
 How to map the ENNs’ structure (connection 
weights and architecture) into one-dimension 
chromosomes? Using binary strings or real numbers to 
represent the connection weights? How to arrange the 
sequence of connection weights to reflect the network 
architecture? 
2) Fitness Function 
 How to construct the fitness function? Need 
additional items besides training error? If necessary, how 
to decide their weights? 
3) Genetic Operators 
 Which types of genetic operators are involved in the 
ENN? What specific operations do they execute 
respectively? 
 All these designing details have great influence on 
evolutionary process and final result, and need paying 
enough attention to. When discussing about our PENN 
later, we will describe these aspects thoroughly. 
 The parallelization of ENN is based on the 
parallelism of GA, and has been performed in four 
following ways: 
1) The parallelization of single individual fitness 

evaluation 
The work of fitness evaluation is most 

time-consuming in ENN, which is involved with 
decoding, training iteration and encoding. Using parallel 
computation technology on single individual fitness 
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evaluation will hopefully improve evaluation efficiency. 
2) The parallelization of individual fitness evaluation 

in population 
In a population, different individual’s fitness 

evaluation is independent and can be performed on 
different processors simultaneously and independently. 
3) The parallelization of individual-generating 

The genetic operations involved in child-generation, 
i.e., reproduce, crossover, mutation etc, can be 
implemented on different individuals simultaneously and 
independently. 
4) The parallelization based on population grouping 

The evolutionary process of one or a group of 
individuals in the population is independent of each other, 
so this provides another way of parallel ENN based on 
population grouping: divide the population into several 
groups, assign each group a processor, evolve these 
population groups simultaneously, and exchange some 
individual information among groups at proper times to 
speed up global evolution progress. 

The former three parallel methods haven’t change 
ENN’s overall frame, while the fourth, by breaking the 
population into groups and exchanging information 
periodically, has potential influence on ENN’s general 
behavior and is most popular due to its simple realization 
in multiple-processor machine and distributed computer 
network system.  

 
2. PENN based on CCG parallel model in 

distributed environments 

2.1 CCG parallel model in distributed 
computation environment 

 
Although distributed computer network is more 

convenient, abundant and economical parallel 
environment compared to multiple-processor machine, 
the much lower coupling degree make it much difficult to 
coordinate and communicate among different processors, 
which needs global schedule and control by software 
programming. Meanwhile, the communication efficiency 
in distributed environment is subject to many external 
impacts, such as connecting material, flow rate, flow 
amount etc., which is much less steady and reliable than 
multi-processor machine. Designing and realizing parallel 
models for distributed system must take these differences 
under careful consideration, and thus more difficult to 
deal with, which may be the reason why there is so little 
related work now. 

The centralized coarse-grained model we present 
here is spirited by Cantu-paz E[3] about the master-slave 
parallel algorithm(We still use the master-slave notation 
in our model)and other previous work on coarse-grained 
parallel model. Our parallel model takes advantage of 
both master-salve and coarse-grained parallel model and 
we consider it fit well for the distributed system. Taking 
three distributed paralleling processors for example, the 
CCG model is illustrated in Figure1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 CCG model for three distributed paralleling processors 
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2.1.1 CCG model 

According to different functions, divide distributed 
paralleling processors into one master and several slaves. 
On the other hand, following the idea of parallelization 
based on population grouping, divide the evolution 
population into several groups, one group for one slave. 
Each slave evolves its population group independently, 
and sends the master its local best individuals after a 
pre-specified number of generations. After the master 
receives all slaves’ local best individuals, it incorporate 
them into one group, which is called global best 
population group, sorts the group according to 
individuals’ fitness, selects global best individuals and 
broadcasts them back to slaves. Slaves keep waiting until 
they receive the feedback from master and continue their 
evolution process before next transfer. 

In the model, the evolution processes on different 
slaves are paralleling, while the works on master and 
slaves are actually been carried on sequentially.  
1) Function specification 

The main responsibility of master is receiving local 
best individuals from all slaves, sorting them by fitness, 
selecting the global best ones and broadcasts them back 
to slaves, also keeping record of the best individual and 
storing global best population group. In contrast, the 
slaves are in charge of ENN on its own population group, 
sending local best, receiving global best, replacing local 
worst. 
2) Communication and information exchange 

In CCG model, inter-processor communication only 
takes place between master and slaves. This reflects the 
design intention for realization simplicity. When one 
slave finishes its current evolution period, it sends the 
master a signal as transfer request, begins data 
transferring if master isn’t busy(if busy, blocks and waits 
for master’s ready message), and then wait until receiving 
global best individuals from master.  

For the master, it keeps sleeping until being woken 
by a slave’s transfer request, and begins the 
uninterruptible data transferring(if another slave ask for 
service during this time, send a busy signal and put it to 
the end of the waiting line). After the transfer is finished, 
it arouses the first slave in the waiting line by sending a 
ready message and starts the next data transferring until it 
gets all slaves’ local best. 
3) CCG versus traditional parallel models 

The CCG model has inherited the 
population-grouping and information-exchanging ideas 
from traditional coarse-grained model, while introduces 
centralizing control to overcome the unstableness in 
distributed system. On the other hand, CCG is quite 
similar to traditional centralizing parallel model at the 
first glimpse, while compared to global evolution and 
selection in centralizing model, CCG performs local 
evolution and selection, which is the most distinct 
advantage of coarse-grained towards centralizing. 

2.1.2 Key parameters 

There are several key paralleling parameters in the 
design and realization of CCG, whose different values 
have great influence on CCG model’s behavior and 
characteristics. 

2.1.2.1 Transferring Scale 

The transferring scale of inter-processor individual 
exchanging is determined by two parameters: transferring 
rate and transferring period. Large-scale transferring will 
make CCG acting like global centralizing model, while 
small scale will enforce the independence of each ENN. 
(1) Transferring rate 

Transferring rate is the amount of the individuals 
transferred, which is often defined by absolute number or 
percent of the population group. A typical transferring 
rate is ten to twenty percent of the population group. 
(2) Transferring period 

Transferring period determines the time interval 
between two transfers, which is usually one or several 
evolutionary generations on slaves. Generally, higher 
transferring rate is companied by longer transferring 
period. 

2.1.2.2 Transferring Strategy 

Transferring strategy includes two aspects, 
transferring selection and transferring replacement. Other 
than the strategy we mentioned in CCG description, there 
are still different choices. 
(1) Transferring selection 

Transferring selection is responsible for selecting 
individuals transferred. Common method is selecting one 
or several best individuals, while selection based on 
fitness proportion is also optional. 
(2) Transferring replacement 

In most cases, one or several worst individuals are 
replaced. While similar with transferring selection, the 
replacement can also be based on fitness-proportion 
selection, which can bring some selection pressure on 
better individuals in the population group. 

2.2  Parallel Evolutionary Neural Networks 

Just as we have mentioned, our PENN aims at 
evolving neural networks’ architecture and connection 
weights simultaneously. Focusing on the three 
fundamental problems in ENN designing, below we will 
present the details for our evolutionary algorithm, which 
mainly deals with feedforward neural networks with 
linear threshold unit and sigmoid transfer function. 

2.2.1 Encoding Scheme 

We use a Java class to describe the neural networks, 
which is the encoding representation of the individual. 

In the Java class, the first parameter represents the 
number of neurons in the hidden layer, and then we use 
an array to store all the weights and connection 



information of the network. The final two parameters 
denote the individual’s fitness and relative fitness. 

In order to encode the weights and connections 
exactly and convenient for genetic operations, we adopt 
real number representation instead of binary code, which 
also makes the length of gene flexible and shorter. Using 
real number representation, we are able to take following 
additional advantages: 

• Crossover can be made only between weights; 
• Mutation is just adding a random number to 

the weight existing, instead of replacing it; 
• Smaller population size because of the 

gene-length flexibility. 

2.2.2 Fitness Function 

Assume that use a training-set on individual i and 
get the total network error )( inetE , which is the sum of 
the errors between the object output vectors and the 
simulative output vectors. Obviously, the higher the total 
error is, the lower the individual’s fitness. 

In addition to the error, we expect the structure of 
the neural network is as simple as possible, given the 
same network performance. The simpleness means the 
optimized architecture should have minimum number of 
neurons and connections. In order to control the 
complexity of the neural network, one control item is 
added to the error function: CH. C is a positive control 
constant, which we call the complexity coefficients of the 
network; H is the number of neuron of the hidden layer. 
Certainly, we expect a CH value as low as possible, given 
a pre-specified C value. 

As a conclusion, we define our fitness function as 
this: 

CHnetE
tnetffitnessipop
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1),(].[           (1) 

The value of coefficient C is suggested to be in 
interval (0,0.5). 

2.2.3 Genetic Operators 

The usual genetic operators include selection, 
breeding, crossover and mutation, which are separately 
implemented to a certain individual in pre-determined 
probabilities. 
 Selection strategy: the evolutionary algorithm 
adopts standard roulette selection operator. The selection 
probability of individual

inet , according to the roulette 
selection strategy, is: 
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N is the size of the population group. 
Breeding operator: select parents from the 

population according to the selection strategy and the 
individual selection probability (its relative fitness), and 
then copy these parents to current population without any 
change. 

Crossover operator: the same number of weights is 
selected from the two parents stochastically and 
independently. Exchange the weights, and thus get two 
offsprings. 

Mutation operator: as we are evolving neural 
network’s architecture and connection weights 
simultaneously, the mutation operators should include 
architecture mutation and connection-weights mutation 
correspondingly. 

1) Architecture mutation 
Four architecture mutation operations are 
carried out in certain probabilities, that is: 
• Delete some neurons in hidden layer and 

(or) the connections and their weights. 
When only delete the connections, we set 
the corresponding weights zero. 

• Insert some neurons into each hidden layer 
and (or) the connections and their weights, 
and generate the corresponding weights 
randomly. 

• For those deleted connections, repair them 
with special probability. 

• Mutate the connection weights with 
adaptive mutation rate. 

2) Connection-weights mutation 
The mutation operation we present here is based on 

adaptive mutation rate, satisfying the evolutionary 
requirement that when the individual has lower fitness 
value, the mutation should be higher. So we introduce the 
simulated annealing algorithms, in which the mutation 
temperature can be defined as: 

)(1 inetfT −=                              (3) 

 Assuming the weight v  will be mutated, the 
definition scope is (a,b), then 
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 Here the value field of ),( yT∆  is (0,y), and the 
probability that ),( yT∆ gets close to zero increases when 

T reduces. 

)1(),(
λTryyT −=∆                           (5) 

 Here r is a random real number from 0 to 1, λ  is a 
parameter that determine the adaptive degree, the value is 
from 2 to 5 commonly. 

3. Results and Discussion 

PENN based on CCG is realized in a 
one-master-two-slave scope. The parallel experimental 
platform is constructed in a three-PC distributed LAN, 
using Java programming and data-package transferring 



technology, which is convenient to build and easy to 
expand to larger-scale application. 

The values of some key experimental parameters are 
listed in Table 1. 

 
Table 1 Values of key experimental parameters 

Population Size (Slave group) 
Transferring Rate 
Transferring Period 
EA Mutation Rate 
EA Crossover Rate 
Network complexity coefficient C 
Adaptive Mutation parameterλ  
Transferring Selection Strategy 
Transferring Replacement Strategy 

100 
5% 
10 
0.001 
0.2 
0.1 
2 
Best 
Worst 

 

3.1 Experimental Results 

The initial experiment results demonstrate that the 
paralleling evolutionary algorithm based on CCG has 
remarkably quickened the search process and improve the 
solution quality at some extent. A typical experimental 
result is shown in Table 2, which is the comparison 
between ENN and PENN on XOR Problem. 

 
Table 2 Comparison results of ENN and PENN 

 Number of 
Generations 

Searching 
Time 
(ms) 

Best 
Individual 

Fitness 

Population 
Error 

ENN 200 883090 0.707 0.481 
PENN 100 for 

each slave 
471480 0.751 0.068 

 
The improvement of solution quality illustrates that 

the PENN based on CCG model is not the simple sum-up 
of two independent paralleling processes, but has 
changed the fundamental behavior of ENN by best 
individual transferring and exchanging. That is similar to 
different offspring quality in marriages between close 
relatives or far relatives, the latter of which is often better 
because of gene mutation and exchange. 

3.2 Efficiency Analysis 

In order to measure the paralleling efficiency, we 
also examined the relative loading degree of the three 
processors and total communication expense. A typical 
result is shown in Table 3. 
 
 
 

Table 3 Run-Time Data of PENN 
 Run 

Time 
Block 
Time 

Package 
Time* 

Compu. 
Time 

Com. 
rate**

Maste
r 

341140 267970 15250 37930 88.9%

Slave 
1 

341140 25609 15630 299901 12.1%

Slave 
2 

341140 23555 15720 301865 11.5%

*Including data packing and unpacking time, and time 
unit is ms 
**Communication Expense rate = (Block time + Data 
package time) / Run time 
 

 From the table, we can find that much of master’s 
run time is spent on blocking, that is, waiting for salves’ 
evolutionary process. It is partly due to CCG’s 
centralizing structure and is a big waste of master 
processor’s resource. A further improvement on this 
problem is adding an evolutionary process to Master 
processor, which is to say, having the master assuming 
the responsibilities of both a master and a slave. It will 
hopefully reduce the master’s idling time and increase 
global paralleling efficiency. 

 

4. PENN in e-business 

 
In the information era, more and more data are stored 

in enterprise database systems. It is still a big problem for 
enterprises to utilize these data well, especially for 
decision. The barriers are not the amount of data, but how 
to cope with mass data, that is, the efficiency of analyzing 
data is the bottleneck. 

PENN provides an efficiency way for enterprise data 
analyzing, especially in the distributed environment. It 
can be used as data mining tools to classify or recognize 
the special pattern hidden in the data.  

As a classifying tool, PENN can process the data in a 
distributed way, such as the customers’ data in a 
commercial bank; it can be used to find the most 
promising customers. It also can be used as predicting 
tool, and time serial analyzing tool. 

At present, a new method for portfolio selection 
based on PENN is studied, and this work will optimize 
the portfolio in a distributed environment. A lot of this 
kind of works can be done, if we find a way to process 
data efficiently and effectively. With the rapid 
development of e-business, more and more data crowd in 
Internet. PENN can be used to treat this data traffic 
problem also, and we will improve PENN methods to fill 
this demand in the future. 

 
 



5. Conclusion 

In this paper, we introduce a kind of paralleling 
model CCG specially designed for distributed system, 
which takes the advantage of both classical centralizing 
and coarse-grained paralleling model and demonstrated to 
fit for parallel algorithms in distributed computation 
environments. 

On the basis of CCG, a parallel evolutionary 
algorithm is designed and realized to optimize the 
architecture and weights of feed-forward neural networks 
simultaneously. It adopts the idea of simulated annealing 
and has been demonstrated better performance than 
sequential algorithms both in searching time and solution 
quality. 

Further work is expected on the convergence and 
behavior analysis of PENN. For its practical application, 
the parameters also need further careful analysis and 
adjustment according to different tasks. 
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