
A Kind of Parallel Evolutionary Algorithms and Its Application in E-Business

Yan Zhu Jian Chen
School of Economics and Management

Tsinghua University
Beijing 100084, China

zhuyan@em.tsinghua.edu.cn, chenj@em.tsinghua.edu.cn

Abstract

Parallel Genetic Algorithms (PGAs) were used to

simultaneously optimize the structure and weights for
feedforward neural networks. Aiming at its large-scale
application in common distributed network system, a
concentrative coarse-grained model for parallel
evolutionary neural networks is designed and realized in
a laboratorial distributed computation environment, and
the initial results of experiments indicate that the parallel
model can quicken the searching process and improve the
evolutionary efficiency. For the parallel characteristics,
this method can analyze massive information during the
process of e-business. Several application scopes of this
method in e-business are discussed also in this paper .
Key words Parallel Evolutionary Neural Networks;
Distributed computation; E-business

1. Introduction

The application of Artificial Neural Networks
(ANNs) has been extended to many areas in recent years.
Common practices are usually involved with using back
propagation (BP) algorithms on structure-predefined
full-connected feed-forward neural networks for
connection weights adjustment. Unfortunately such
training is often time-consuming, especially for
large-scale problem, and user-dependent for ANNs’
architecture definition, which is crucial to the training
process, while still a difficult decision, without optimum
rules to follow.

Evolutionary Neural Networks (ENNs) provide a
prominent alternative neural-network training method.
They take advantage of evolutionary algorithms’ (EAs)
global searching ability, not only automatically optimize
ANNs’ architecture according to particular tasks, but also
dynamically improve ANNs’ generalization performance.
However, when encountered with large-scale problem,
ENNs also suffer from considerable computation expense
due to complex network architecture.

Parallel Evolutionary Neural Networks (PENNs)
have the potential to find fittest ANNs in significantly
less time than serial ENNs. Aiming at PENNs’ extensive
application in common distributed computer network, we
have been devoted to the analysis, design and
implementation of parallel algorithms in distributed

computation environments, compared to numerous
studies in multi-processor workstations.

In this paper, we introduce a kind of parallel model
specially designed for PENN in distributed system, on the
basis of which a parallel evolutionary algorithm is
realized to optimize the architecture and weights of
feed-forward neural networks simultaneously.

As we know, the most popular evolutionary
algorithm used in ENNs is Genetic Algorithms (GAs).
There are generally three kinds of evolution in GA-based
ENN, i.e., the evolution of connection weights, of
architectures and of learning rules, according to the level
to which evolutionary search procedures come into
ANNs[1]. If the learning rules are pre-defined and fixed,
the main procedures of the two kinds of evolution are so
similar that we can combine them into one evolutionary
algorithm, which will be described later.
 A successful design of ENN requires careful
consideration about several crucial aspects[2]:
1) Encoding Scheme
 How to map the ENNs’ structure (connection
weights and architecture) into one-dimension
chromosomes? Using binary strings or real numbers to
represent the connection weights? How to arrange the
sequence of connection weights to reflect the network
architecture?
2) Fitness Function
 How to construct the fitness function? Need
additional items besides training error? If necessary, how
to decide their weights?
3) Genetic Operators
 Which types of genetic operators are involved in the
ENN? What specific operations do they execute
respectively?
 All these designing details have great influence on
evolutionary process and final result, and need paying
enough attention to. When discussing about our PENN
later, we will describe these aspects thoroughly.
 The parallelization of ENN is based on the
parallelism of GA, and has been performed in four
following ways:
1) The parallelization of single individual fitness

evaluation
The work of fitness evaluation is most

time-consuming in ENN, which is involved with
decoding, training iteration and encoding. Using parallel
computation technology on single individual fitness

Administrator
The Second International Conference on Electronic Business Taipei, Taiwan, December 10-13, 2002

Administrator

evaluation will hopefully improve evaluation efficiency.
2) The parallelization of individual fitness evaluation

in population
In a population, different individual’s fitness

evaluation is independent and can be performed on
different processors simultaneously and independently.
3) The parallelization of individual-generating

The genetic operations involved in child-generation,
i.e., reproduce, crossover, mutation etc, can be
implemented on different individuals simultaneously and
independently.
4) The parallelization based on population grouping

The evolutionary process of one or a group of
individuals in the population is independent of each other,
so this provides another way of parallel ENN based on
population grouping: divide the population into several
groups, assign each group a processor, evolve these
population groups simultaneously, and exchange some
individual information among groups at proper times to
speed up global evolution progress.

The former three parallel methods haven’t change
ENN’s overall frame, while the fourth, by breaking the
population into groups and exchanging information
periodically, has potential influence on ENN’s general
behavior and is most popular due to its simple realization
in multiple-processor machine and distributed computer
network system.

2. PENN based on CCG parallel model in

distributed environments

2.1 CCG parallel model in distributed
computation environment

Although distributed computer network is more

convenient, abundant and economical parallel
environment compared to multiple-processor machine,
the much lower coupling degree make it much difficult to
coordinate and communicate among different processors,
which needs global schedule and control by software
programming. Meanwhile, the communication efficiency
in distributed environment is subject to many external
impacts, such as connecting material, flow rate, flow
amount etc., which is much less steady and reliable than
multi-processor machine. Designing and realizing parallel
models for distributed system must take these differences
under careful consideration, and thus more difficult to
deal with, which may be the reason why there is so little
related work now.

The centralized coarse-grained model we present
here is spirited by Cantu-paz E[3] about the master-slave
parallel algorithm(We still use the master-slave notation
in our model)and other previous work on coarse-grained
parallel model. Our parallel model takes advantage of
both master-salve and coarse-grained parallel model and
we consider it fit well for the distributed system. Taking
three distributed paralleling processors for example, the
CCG model is illustrated in Figure1.

Figure 1 CCG model for three distributed paralleling processors

Master

Group 2Group 1

Evolve population

group 1

independently,

and send local

 Global

b l i

Receive local

best individuals

from two slaves,

sort, select and

Slave 1 Slave 2

Local best

individuals

Global best

individuals

Global best

individuals

Evolve population

group 2

independently,

and send local

Local best

individuals

2.1.1 CCG model

According to different functions, divide distributed
paralleling processors into one master and several slaves.
On the other hand, following the idea of parallelization
based on population grouping, divide the evolution
population into several groups, one group for one slave.
Each slave evolves its population group independently,
and sends the master its local best individuals after a
pre-specified number of generations. After the master
receives all slaves’ local best individuals, it incorporate
them into one group, which is called global best
population group, sorts the group according to
individuals’ fitness, selects global best individuals and
broadcasts them back to slaves. Slaves keep waiting until
they receive the feedback from master and continue their
evolution process before next transfer.

In the model, the evolution processes on different
slaves are paralleling, while the works on master and
slaves are actually been carried on sequentially.
1) Function specification

The main responsibility of master is receiving local
best individuals from all slaves, sorting them by fitness,
selecting the global best ones and broadcasts them back
to slaves, also keeping record of the best individual and
storing global best population group. In contrast, the
slaves are in charge of ENN on its own population group,
sending local best, receiving global best, replacing local
worst.
2) Communication and information exchange

In CCG model, inter-processor communication only
takes place between master and slaves. This reflects the
design intention for realization simplicity. When one
slave finishes its current evolution period, it sends the
master a signal as transfer request, begins data
transferring if master isn’t busy(if busy, blocks and waits
for master’s ready message), and then wait until receiving
global best individuals from master.

For the master, it keeps sleeping until being woken
by a slave’s transfer request, and begins the
uninterruptible data transferring(if another slave ask for
service during this time, send a busy signal and put it to
the end of the waiting line). After the transfer is finished,
it arouses the first slave in the waiting line by sending a
ready message and starts the next data transferring until it
gets all slaves’ local best.
3) CCG versus traditional parallel models

The CCG model has inherited the
population-grouping and information-exchanging ideas
from traditional coarse-grained model, while introduces
centralizing control to overcome the unstableness in
distributed system. On the other hand, CCG is quite
similar to traditional centralizing parallel model at the
first glimpse, while compared to global evolution and
selection in centralizing model, CCG performs local
evolution and selection, which is the most distinct
advantage of coarse-grained towards centralizing.

2.1.2 Key parameters

There are several key paralleling parameters in the
design and realization of CCG, whose different values
have great influence on CCG model’s behavior and
characteristics.

2.1.2.1 Transferring Scale

The transferring scale of inter-processor individual
exchanging is determined by two parameters: transferring
rate and transferring period. Large-scale transferring will
make CCG acting like global centralizing model, while
small scale will enforce the independence of each ENN.
(1) Transferring rate

Transferring rate is the amount of the individuals
transferred, which is often defined by absolute number or
percent of the population group. A typical transferring
rate is ten to twenty percent of the population group.
(2) Transferring period

Transferring period determines the time interval
between two transfers, which is usually one or several
evolutionary generations on slaves. Generally, higher
transferring rate is companied by longer transferring
period.

2.1.2.2 Transferring Strategy

Transferring strategy includes two aspects,
transferring selection and transferring replacement. Other
than the strategy we mentioned in CCG description, there
are still different choices.
(1) Transferring selection

Transferring selection is responsible for selecting
individuals transferred. Common method is selecting one
or several best individuals, while selection based on
fitness proportion is also optional.
(2) Transferring replacement

In most cases, one or several worst individuals are
replaced. While similar with transferring selection, the
replacement can also be based on fitness-proportion
selection, which can bring some selection pressure on
better individuals in the population group.

2.2 Parallel Evolutionary Neural Networks

Just as we have mentioned, our PENN aims at
evolving neural networks’ architecture and connection
weights simultaneously. Focusing on the three
fundamental problems in ENN designing, below we will
present the details for our evolutionary algorithm, which
mainly deals with feedforward neural networks with
linear threshold unit and sigmoid transfer function.

2.2.1 Encoding Scheme

We use a Java class to describe the neural networks,
which is the encoding representation of the individual.

In the Java class, the first parameter represents the
number of neurons in the hidden layer, and then we use
an array to store all the weights and connection

information of the network. The final two parameters
denote the individual’s fitness and relative fitness.

In order to encode the weights and connections
exactly and convenient for genetic operations, we adopt
real number representation instead of binary code, which
also makes the length of gene flexible and shorter. Using
real number representation, we are able to take following
additional advantages:

• Crossover can be made only between weights;
• Mutation is just adding a random number to

the weight existing, instead of replacing it;
• Smaller population size because of the

gene-length flexibility.

2.2.2 Fitness Function

Assume that use a training-set on individual i and
get the total network error)(inetE , which is the sum of
the errors between the object output vectors and the
simulative output vectors. Obviously, the higher the total
error is, the lower the individual’s fitness.

In addition to the error, we expect the structure of
the neural network is as simple as possible, given the
same network performance. The simpleness means the
optimized architecture should have minimum number of
neurons and connections. In order to control the
complexity of the neural network, one control item is
added to the error function: CH. C is a positive control
constant, which we call the complexity coefficients of the
network; H is the number of neuron of the hidden layer.
Certainly, we expect a CH value as low as possible, given
a pre-specified C value.

As a conclusion, we define our fitness function as
this:

CHnetE
tnetffitnessipop

i
i ++

==
)(1

1),(].[(1)

The value of coefficient C is suggested to be in
interval (0,0.5).

2.2.3 Genetic Operators

The usual genetic operators include selection,
breeding, crossover and mutation, which are separately
implemented to a certain individual in pre-determined
probabilities.
 Selection strategy: the evolutionary algorithm
adopts standard roulette selection operator. The selection
probability of individual

inet , according to the roulette
selection strategy, is:

∑
=

==
N

j

i

fitnessjpop

fitnessipop
trelativefiipopp

1
].[

].[
].[

 (2)

N is the size of the population group.
Breeding operator: select parents from the

population according to the selection strategy and the
individual selection probability (its relative fitness), and
then copy these parents to current population without any
change.

Crossover operator: the same number of weights is
selected from the two parents stochastically and
independently. Exchange the weights, and thus get two
offsprings.

Mutation operator: as we are evolving neural
network’s architecture and connection weights
simultaneously, the mutation operators should include
architecture mutation and connection-weights mutation
correspondingly.

1) Architecture mutation
Four architecture mutation operations are
carried out in certain probabilities, that is:
• Delete some neurons in hidden layer and

(or) the connections and their weights.
When only delete the connections, we set
the corresponding weights zero.

• Insert some neurons into each hidden layer
and (or) the connections and their weights,
and generate the corresponding weights
randomly.

• For those deleted connections, repair them
with special probability.

• Mutate the connection weights with
adaptive mutation rate.

2) Connection-weights mutation
The mutation operation we present here is based on

adaptive mutation rate, satisfying the evolutionary
requirement that when the individual has lower fitness
value, the mutation should be higher. So we introduce the
simulated annealing algorithms, in which the mutation
temperature can be defined as:

)(1 inetfT −= (3)

 Assuming the weight v will be mutated, the
definition scope is (a,b), then

=−∆−

=−∆+

=′

1)2(),,(

0)2(),,(

rndavTv

rndvbTv
v (4)

 Here the value field of),(yT∆ is (0,y), and the
probability that),(yT∆ gets close to zero increases when

T reduces.

)1(),(
λTryyT −=∆ (5)

 Here r is a random real number from 0 to 1, λ is a
parameter that determine the adaptive degree, the value is
from 2 to 5 commonly.

3. Results and Discussion

PENN based on CCG is realized in a
one-master-two-slave scope. The parallel experimental
platform is constructed in a three-PC distributed LAN,
using Java programming and data-package transferring

technology, which is convenient to build and easy to
expand to larger-scale application.

The values of some key experimental parameters are
listed in Table 1.

Table 1 Values of key experimental parameters

Population Size (Slave group)
Transferring Rate
Transferring Period
EA Mutation Rate
EA Crossover Rate
Network complexity coefficient C
Adaptive Mutation parameterλ
Transferring Selection Strategy
Transferring Replacement Strategy

100
5%
10
0.001
0.2
0.1
2
Best
Worst

3.1 Experimental Results

The initial experiment results demonstrate that the
paralleling evolutionary algorithm based on CCG has
remarkably quickened the search process and improve the
solution quality at some extent. A typical experimental
result is shown in Table 2, which is the comparison
between ENN and PENN on XOR Problem.

Table 2 Comparison results of ENN and PENN

 Number of
Generations

Searching
Time
(ms)

Best
Individual

Fitness

Population
Error

ENN 200 883090 0.707 0.481
PENN 100 for

each slave
471480 0.751 0.068

The improvement of solution quality illustrates that

the PENN based on CCG model is not the simple sum-up
of two independent paralleling processes, but has
changed the fundamental behavior of ENN by best
individual transferring and exchanging. That is similar to
different offspring quality in marriages between close
relatives or far relatives, the latter of which is often better
because of gene mutation and exchange.

3.2 Efficiency Analysis

In order to measure the paralleling efficiency, we
also examined the relative loading degree of the three
processors and total communication expense. A typical
result is shown in Table 3.

Table 3 Run-Time Data of PENN
 Run

Time
Block
Time

Package
Time*

Compu.
Time

Com.
rate**

Maste
r

341140 267970 15250 37930 88.9%

Slave
1

341140 25609 15630 299901 12.1%

Slave
2

341140 23555 15720 301865 11.5%

*Including data packing and unpacking time, and time
unit is ms
**Communication Expense rate = (Block time + Data
package time) / Run time

 From the table, we can find that much of master’s
run time is spent on blocking, that is, waiting for salves’
evolutionary process. It is partly due to CCG’s
centralizing structure and is a big waste of master
processor’s resource. A further improvement on this
problem is adding an evolutionary process to Master
processor, which is to say, having the master assuming
the responsibilities of both a master and a slave. It will
hopefully reduce the master’s idling time and increase
global paralleling efficiency.

4. PENN in e-business

In the information era, more and more data are stored

in enterprise database systems. It is still a big problem for
enterprises to utilize these data well, especially for
decision. The barriers are not the amount of data, but how
to cope with mass data, that is, the efficiency of analyzing
data is the bottleneck.

PENN provides an efficiency way for enterprise data
analyzing, especially in the distributed environment. It
can be used as data mining tools to classify or recognize
the special pattern hidden in the data.

As a classifying tool, PENN can process the data in a
distributed way, such as the customers’ data in a
commercial bank; it can be used to find the most
promising customers. It also can be used as predicting
tool, and time serial analyzing tool.

At present, a new method for portfolio selection
based on PENN is studied, and this work will optimize
the portfolio in a distributed environment. A lot of this
kind of works can be done, if we find a way to process
data efficiently and effectively. With the rapid
development of e-business, more and more data crowd in
Internet. PENN can be used to treat this data traffic
problem also, and we will improve PENN methods to fill
this demand in the future.

5. Conclusion

In this paper, we introduce a kind of paralleling
model CCG specially designed for distributed system,
which takes the advantage of both classical centralizing
and coarse-grained paralleling model and demonstrated to
fit for parallel algorithms in distributed computation
environments.

On the basis of CCG, a parallel evolutionary
algorithm is designed and realized to optimize the
architecture and weights of feed-forward neural networks
simultaneously. It adopts the idea of simulated annealing
and has been demonstrated better performance than
sequential algorithms both in searching time and solution
quality.

Further work is expected on the convergence and
behavior analysis of PENN. For its practical application,
the parameters also need further careful analysis and
adjustment according to different tasks.

Acknowledgement

This work is partly supported by National Science
Foundation of China (grant No. 70101008).

Reference

[1] X. Yao, “A review of Evolutionary Artificial Neural
Networks,” International Journal of Intelligent Systems, Vol.8,
No.4, 1993, pp.539-567

[2] V. Maniezzo, “Genetic Evolution of the Topology and
Weight Distribution of Neural Networks,” IEEE Trans. On
Neural Networks, Vol.5, No.1, 1994, pp.39-53

[3] Cantu-paz E, ”Designing efficient master-slave parallel
genetic algorithms”, ITR 97004. Urbana, IL: University of
Illinois Urbana- Champaign, 1997

[4] Y. Zhu, J. Chen, “Studies on genetic multiplayer
feedforward neural networks and the development of GMNN.
IEEE International Conference on Systems, Man, and
Cybernetics [C]. Tokyo: SMC'99 Publication Committee, 1999

[5] X,T. Guo, Y. Zhu, “Evolutionary Neural Networks based on
Genetic Algorithms”, Tsinghua Science and Technology, Vol.40,
No.10, 2000, pp.116-119

