
Atomicity Implementation in E-Commerce Systems*

Lars Frank and Uffe Kofod
Department of Informatics,Copenhagen Business School, Howitzvej 60, DK-2000 Frederiksberg, Denmark.

 frank@CBS.DK

* This project was in part supported from ’Udviklingscenter for e-business’ – UCEB.

Abstract

Distributed databases with high performance and
availability do not have the traditional ACID properties
(Atomicity, Consistency, Isolation and Durability)
because long duration locks will reduce the availability
and the write performance. The problems of the missing
ACID properties may be avoided by using approximated
ACID properties, i.e. from an application point of view;
the system should function as if all the traditional ACID
properties had been implemented. The distributed
approximated atomicity property manages the workflow
of a transaction in such a way that either all the updates
of the global transaction are executed (sooner or later) or
all the updates of the global transaction are
removed/compensated. In this paper, we will describe a
flexible algorithm for implementing distributed
approximated atomicity. Frank and Zahle [1] have
described how to implement the other global
approximated ACID properties.

We will illustrate our algorithm with E-commerce
examples. If one of the partaking subsystems fails in a
system for E-commerce, the approximated atomicity
property will ensure that when an order is accepted, the
payment and stock levels are managed automatically in
the locations of the partaking banks and product stocks.
Even logistics and/or production may be managed by
using approximated atomicity.

We have cooperated with one of the major ERP
(Enterprise Resource Planning) software companies in
designing a distributed version of the ERP system with
local autonomous databases in the different sales and
stock locations.

Keywords: ACID properties, approximated atomicity,

distributed systems, electronic commerce, ERP systems.

1. Introduction

In the transaction model described in this paper, the
approximated atomicity property is implemented by using
retriable, pivot and compensatable subtransactions. The
global consistency property does not exist in our
transaction model. However, the concept asymptotic
consistency can be used to create a consistent database
state for e.g. datawarehousing [10]. The approximated
isolation property is implemented by using
countermeasures [1] to the isolation anomalies that occur
when transactions are executed without isolation. The

global durability property is implemented by using the
durability property of the local DBMS systems.

Our algorithm for approximated atomicity
implementation is a transaction pattern with all the
necessary types of database accesses, but without the
application logic. This transaction pattern must be used
by all distributed transactions. By using our transaction
pattern, the development costs for new applications may
be reduced.

By means of examples, we will illustrate how to
implement the approximated atomicity property in E-
commerce systems. There are many different workflow
architectures for E-commerce systems [12] and our
transaction pattern cannot cover them all. However, our
transaction pattern can manage the distributed workflow
needed in most E-commerce systems [13].

The paper is organized as follows:
Section 2 will describe an extended transaction model

that provides approximated ACID properties. Section 3
describes a general transaction pattern (algorithm) for
implementing the approximated atomicity property. In
this section, we will also illustrate by examples how to
implement the approximated atomicity property in
practice. Concluding remarks are presented in section 4.

Related Research: The transaction model described in

section 2 is The Countermeasure Transaction Model [1].
This model owes many of its properties to e.g. Garcia-
Molina and Salem [2], Mehrotra [3], Weikum and Schek
[4] and Zhang [5]. Frank and Zahle [1] describe in detail
the countermeasures used against the isolation anomalies
in the E-commerce examples of section 3.

An early version of the pattern described in this paper
has been developed for atomicity implementation in
CSCW systems [14].

2. The Transaction Model

A multidatabase is a union of local autonomous
databases. Global transactions [7] access data located in
more than one local database. In recent years, many
transaction models have been designed in order to
integrate local databases without using a distributed
DBMS. The countermeasure transaction model [1], has,
among other things, selected and integrated properties
from these transaction models in order to reduce the
problems of the missing ACID properties in a distributed
database not managed by a distributed DBMS. In The
Countermeasure Transaction Model, a global transaction

Administrator
The Second International Conference on Electronic Business Taipei, Taiwan, December 10-13, 2002

Administrator

consists of a root transaction (client transaction) and
several single site subtransactions (server transactions).
The subtransactions can be nested transactions; i.e. a
subtransaction may be a parent transaction for other
subtransactions.

All communication with the user is managed from the
root transaction, and all data is accessed through
subtransactions. A subtransaction is either an execution
of a stored procedure that automatically returns control to
the parent transaction or an execution of a stored
program that does not return control to the parent
transaction.

All remote subtransactions are accessed through one of
the following types of tools:

Remote Call (RC)
From a programmer’s point of view, a RC

functions like a remote procedure call or submission
of a SQL query. RCs have the following properties,
which are important from a performance and an
atomicity point of view:
• If a parent transaction executes several RCs, the

corresponding subtransactions are executed one
at a time.

• A stored procedure or SQL submission has only
local ACID properties.

• The stored procedure or SQL submission can
automatically return control to the parent
transaction.

Update Propagation (UP)
In this context, UP is used in the general sense of

propagation of any update (not just replicas). The UP
tool works in the following way:

The parent transaction makes the UP “call” by
storing a so-called transaction record in persistent
storage at the parent location. The following
information must be stored in the transaction record:

The parent transaction id, the id of the
subtransaction, the id of the location where the
subtransaction should be executed, the id of a
stored procedure (or the SQL code) and the
parameters of the subtransaction.

If the parent transaction fails, the transaction record
will be rolled back, and consequently the
subtransaction will not be executed. When the parent
transaction is committed, the transaction record is
secured in persistent storage, and we say that the UP
has been initiated. After the initiation of the UP, the
transaction record will be read and sent by the UP tool
to the location where the subtransaction should be
executed. UPs may be implemented by using either
push or pull technology as described in Frank and
Zahle [1]. UPs have the following properties, which
are important from a performance and an atomicity
point of view:
• If a parent transaction initiates several UPs, the

corresponding subtransactions may be executed
in parallel.

• A subtransaction initiated from a UP has
atomicity together with the parent transaction, i.e.
either both are executed or none are.

• A subtransaction does not automatically return
control to the parent transaction.

In the following, we will give a broad outline of how

approximated ACID properties are implemented in the
Countermeasure Transaction Model.

2.1 The Atomicity Property

An updating transaction has the atomicity property and
is called atomic if either all or none of its updates are
executed. In The Countermeasure Transaction Model, the
global transaction is partitioned into the following types
of subtransactions that are executed in different locations:
• The pivot subtransaction that manages the atomicity

of the global transaction, i.e. the global transaction is
committed when the pivot subtransaction is
committed locally. If the pivot subtransaction aborts,
all the updates of the other subtransactions must be
compensated or not be executed.

• The compensatable subtransactions that all may be
compensated. Compensatable subtransactions must
always be executed before the pivot subtransaction is
executed to make it possible to compensate them if
the pivot subtransaction cannot be committed.
Compensation is achieved by executing a
compensating subtransaction.

• The retriable subtransactions that are designed in
such a way that the execution is guaranteed to
commit locally (sooner or later) if the pivot
subtransaction is committed. A UP tool is used to
automatically resubmit the request for execution until
the subtransaction has been committed locally, i.e.
the UP tool is used to force the retriable
subtransaction to be executed.

The global atomicity of the pivot transaction models is

implemented by executing compensatable, pivot and
retriable subtransactions in that order.

RCs can be used to call/start the compensatable
subtransactions and/or a pivot subtransaction, because the
execution of these subtransactions is not mandatory from
a global atomicity point of view. (If any problems occur
before the pivot commit, we can compensate the first part
of the global transaction).

After the commit decision of the global transaction, all
the remaining updates are mandatory. Therefore, UPs are
always used to execute the retriable subtransactions,
which are always executed after the global commitment.

If the pivot fails or cannot be executed, the execution
of all the compensating subtransactions are mandatory.
Therefore, UPs are always used to execute the retriable
compensating subtransactions.

Example 2.1
Let us suppose that an amount of money is to be

moved from an account in one location to an account

in another location. In such a case, the global
transaction may be designed as a root transaction that
calls a compensatable withdrawal subtransaction and
a retriable deposit subtransaction. Since there is no
inherent pivot subtransaction, the withdrawal
subtransaction may be chosen as pivot. In other
words, the root transaction executed at the user’s PC
may call a pivot subtransaction executed at the bank
of the user, which has a UP that “initiates” the
retriable deposit subtransaction. If the pivot
withdrawal is committed, the retriable deposit
subtransaction will automatically be executed and
committed later. If the pivot subtransaction fails, the
pivot subtransaction will be backed out by the local
DBMS. In such a situation, the retriable deposit
subtransaction will not be executed.

In our transaction model, subtransactions may be

nested, i.e. a subtransaction may call another
subtransaction, etc. In The Open Nested Transaction
Model [4], the subtransactions of a compensatable
subtransaction must be compensatable. (Otherwise, the
parent transaction cannot be compensatable). This idea
has been generalized and integrated into our transaction
model in the following way:
• Subtransactions of a compensatable subtransaction

must be compensatable. Please notice that sometimes
the subtransactions of a compensatable
subtransaction may also be designed as retriable,
which simplifies the application program and reduces
the response time.

• Subtransactions of a retriable subtransaction must
also be retriable. (Otherwise, the parent transaction
cannot be retriable).

• Subtransactions of a pivot subtransaction must either
be compensatable or retriable. Compensatable
subtransactions must be executed before the commit
of the pivot subtransaction and retriable
subtransactions must be executed after the commit of
the pivot subtransaction.

Furthermore, a non-committed transaction should be

subject to changes. This implies that a retriable
subtransaction, which more or less compensates a
compensatable subtransaction, may be executed before
the commit of the pivot subtransaction.

2.2 The Consistency Property

A database is consistent if the data in the database
obeys the consistency rules of the database. If the
database is consistent both when a transaction starts and
when it has been completed and committed, the execution
has the consistency property. Transaction Consistency
rules may be implemented as a control program that
rejects the commitment of transactions, which do not
obey the consistency rules.

The definition above of the consistency property is not
useful in multidatabases with approximated ACID
properties because such a database is normally always
inconsistent. However, a distributed database with

approximated ACID properties should have asymptotic
consistency, i.e. the database should converge towards a
consistent state when all active transactions have been
committed/compensated. Therefore, in distributed
databases with approximated ACID properties, we want
the following property:

If the database is asymptotically consistent when a
transaction starts and also when the transaction is
committed, the execution has the approximated
consistency property.

Frank [10] has described how to make a consistent

database state for datawarehousing on top of a distributed
database with approximated ACID properties.

2.3 The Isolation Property

A transaction is executed in isolation if the updates of
the transaction only are seen by other transactions after
the updates of the transaction have been committed.

If the atomicity property is implemented, but there is
no global concurrency control, the following isolation
anomalies may occur [7] [8]:

• The lost update anomaly is by definition a
situation where a first transaction reads a record
for update without using locks. After this, the
record is updated by another transaction. Later,
the update is overwritten by the first transaction.
In the countermeasure transaction model the lost
update anomaly may be prevented, if the first
transaction reads and updates the record in the
same subtransaction using local ACID properties.
Unfortunately, the read and the update are often
executed in different subtransactions, as we do not
recommend locking a record across a dialog with
the user. Therefore, it is possible for a second
transaction to update the record between the read
and the update of the first transaction.

• The dirty read anomaly is by definition a situation
where a first transaction updates a record without
committing the update. After this, a second
transaction reads the record. Later, the first update
is aborted (or committed); i.e. the second
transaction may have read a non-existing version
of the record. In our transaction model this may
happen when the first transaction updates a record
by using a compensatable subtransaction and later
aborts the update by using a compensating
subtransaction. If a second transaction reads the
record before it is compensated, the data read will
be “dirty”.

• The non-repeatable read anomaly or fuzzy read is
by definition a situation where a first transaction
reads a record without using long duration locks
[7]. This record is later updated and committed by
a second transaction before the first transaction is
committed or aborted. In other words, we cannot
rely on what we have read. In our transaction
model this may happen when the first transaction
reads a record that is updated by a second

transaction, which commits the record locally
before the first transaction commits globally.

• The phantom anomaly is not relevant in this paper.

In the following, we will only describe the
countermeasures that are used in the e-commerce
examples of section 3. We will first describe a
countermeasure against the lost update anomaly, because
it is the most important anomaly to guard against.

The Commutative Updates Countermeasure
Adding and subtracting an amount from an account are

examples of commutative updates. If a subtransaction
only has commutative updates, it may be designed as
commutable with other subtransactions that only have
commutative updates. This is a very important
countermeasure, because retriable subtransactions have to
be commutative in order to prevent the lost update
anomaly.

 Example 2.2

A deposit may be designed as a retriable
commutative subtransaction, where the
subtransaction reads the old balance of the account
by using a local exclusive lock, adds the deposit to
the balance and rewrites the account record. After
this the retriable commutative subtransaction will
commit locally. This deposit subtransaction is
commutable with other deposit and withdrawal
subtransactions.

The Pessimistic View Countermeasure
It is sometimes possible to reduce or eliminate the

dirty read anomaly and/or the non-repeatable read
anomaly by giving the users a pessimistic view of the
situation. The purpose is to eliminate the risk involved in
using data where long duration locks should have been
used. A pessimistic view countermeasure may be
implemented by using:
• Compensatable subtransactions for updates which

limit the options of the users.
• Retriable subtransactions for updates which increase

the options of the users.

Example 2.3

When updating stocks, accounts, vacant passenger
capacity, etc. it is possible to reduce the risk of
reading stock values that are not available ("dirty“ or
“non-repeatable" data). These pessimistic stock values
will automatically be obtained if the transactions
updating the stocks are designed in such a way that
compensatable subtransactions (or the pivot
transaction) are used to reduce the stocks and retriable
subtransactions (or the pivot transaction) are used to
increase the stocks.

2.4 The Durability Property

The execution of a transaction has the durability property,
if the updates of a transaction cannot be lost after the

transaction has been committed. The updates of
transactions are said to be durable if they are stored in
stable storage and secured by a log recovery system. In
case a global transaction has the atomicity property (or
approximated atomicity), the global durability property
(or approximated durability property) will automatically
be implemented, as it is ensured by the log-system of the
local DBMS systems [9].

3. A Transaction Pattern for Atomicity
Implementation

In this section, we will describe a general transaction
pattern that can simplify the atomicity implementation. In
order to implement the atomicity property, the transaction
pattern must follow the rules of our nested transaction
model described in section 2. After the presentation of the
transaction pattern, examples will illustrate how to use
the transaction pattern.

The following figure illustrates a UML statechart

diagram for a global transaction. The syntax for a
transition has tree parts, all of which are optional: Event
[Guard] / Action. In the diagram, all the events are either
subtransactions submitted by the user or subtransaction
aborts. All the event actions and state activities of the
diagram must be designed with “subtransaction
atomicity”. In the diagram, we do not deal with
subtransaction aborts that do not change the state of the
global transaction, because the user without problems can
resubmit these subtransactions. All the event guards
coming from the same state in the diagram are mutually
exclusive, and, therefore, the diagram does not have loose
ends.

The description of the event actions and state activities

is a pattern without application logic, i.e., only the
necessary database access types of the actions/activities
are described. It is important to distinguish between two
types of locations for each subtransaction:
• The “execution location” is the location where a

subtransaction is executed. For example, the “root
location” is the execution location of the root
transaction, and it is normally the user’s PC. The
“pivot location” is the location where the pivot
subtransaction is executed.

• A “log location” is the location where the parameters
of a subtransaction are stored. If an event
corresponding to a subtransaction changes the state
of the global transaction, the new state is also stored
in the log location.

Often, the log location of a subtransaction is not the
same as the execution location, and, in such a situation, it
is important to make the updates in the two locations
atomic (or approximated atomic). Otherwise, recovery
will be much more complex.

If a subtransaction fails and/or the user does not get an

answer, it is important for the user to know the state of

the global transaction. Therefore, a State record must first
be created in the log location of the root transaction.
Later, a new State record is created in the log location of
the compensating subtransactions, and finally, a State

record is created in the log location of the pivot
subtransaction. By reading these State records it is always
possible to find the state of the global transaction.

Retriable subtransaction [Partial compensation is
possible] / Update parameters and initiate
compensation. Execute partial compensation
asynchronously.

Pivot subtransaction

Retriable subtransaction [Partial compensation is not
possible] / Return error message to the user.

Retriable state.

Compensational

state

Pivot state.
do/Execute pivot and
initiate any retriable
subtrabsactions.

Cancel state.
do/ Initiate any
retriable
compensating
subtransactions.

Read only
subtransaction.

Cancel or time-out
subtransaction

 [Initiation
 abort]

Start

[Pivot commit]

Compensatable subtransaction /
Log the parameters and execute the
compensational subtransaction.

[Pivot abort]

End

[Initiation commit]

Transaction start / Log the
 state and parameters of
the transaction.

[All retriable
subtransactions
are committed]

Retriable subtransaction [Not all
retriable subtransactions are
committed] / Execute retriable
subtransaction.

Figure 3.1. Statechart diagram for a general global transaction.

In the following, we will illustrate how to use our

nested transaction model in E-commerce systems. The
first example outlines how business-to-business E-
commerce transactions may be designed by using our
transaction model. The second example describes a more
complex business-to-consumer E-commerce transaction.

In contrast to the business-to-consumer segment,
business-to-business E-commerce may anticipate trust
between the customer and seller. Hence, global
transactions need not involve a third party, such as the

bank of the customer or seller. This simplifies the global
transaction in Example 3.1 compared to Example 3.2,
which describes the global transaction of a retail
customer.

Example 3.1

In this example of business-to-business E-commerce,
we will assume that the seller has a customer file with the
names, addresses, account balances and credit limits for
all his customers. Therefore, the banks of the customers

are not involved in the following description of the order
transaction. In this example, we choose the local server of
the seller as both pivot location and log location for all
the subtransactions. The root location is the user’s local
PC. Other locations are any remote stock servers of the
seller.

At first, the customer reads the offers made by the
seller. If the customer wants to make an order, the root
transaction in the location of the customer calls a
compensatable subtransaction at the location of the seller.
This subtransaction creates an order record with
relationship to the customer record at the same location.
A new State record with the value “Compensatable state”
is created for the transaction. Now, the customer can
make order-lines. For each new order-line made by the
customer, the root transaction starts a compensatable
subtransaction, and this subtransaction creates an order-
line at the location of the seller. For each order-line, a
compensatable sub-subtransaction updates the local (or
remote) stock of the product ordered in the order-line. If
the first stock cannot fulfill the quantity ordered in the
order-line, another stock may be accessed by using
another compensatable sub-subtransaction. If an order-
line cannot be fulfilled, the field “quantity-delivered” in
the order-line is updated. Please notice that only short
duration locks are used, and, therefore, distributed
deadlock cannot occur. When the order form has been
completed, the pivot subtransaction is executed at the
location of the seller where it updates the account balance
of the customer. If the credit limit of the customer is not
violated, the pivot subtransaction initiates a retriable sub-
subtransaction that is sent to the customer to confirm the
deal. The pivot subtransaction also changes the State
record to “Retriable state” before all the updates are
committed. Alternatively, the global transaction will be
rejected or the customer asked to reduce the amount of
the balance in order to avoid violating the credit limit.

By executing a retriable subtransaction that reduces
the quantity ordered in an order-line, the amount in the
order-line may be reduced. For each reduced order-line, a
retriable sub-subtransaction increases the local (or
remote) stock of the product that is reduced in the
modified order-line. Finally, the customer can retry to
execute the pivot subtransaction.

Example 3.2

In this example, we will describe the atomicity
implementation of a business-to-consumer E-commerce
transaction where the global transaction also involves the
banks of the customers and the seller. In the example, the
bank of the customer is used as the pivot location. The
server of the seller is the log location of all the
subtransactions. The PC of the user is the root location.
When the retail customer wants to make an order, the first
compensatable part of the global transaction may be the
same as in the previous example, where the order and
order-lines were created. However, the seller may not
know the customer, and, therefore, a compensatable
customer record should also be established. Before the
pivot subtransaction is executed, the balance of the

customer is updated by a compensatable subtransaction
and the State record changed to “Pivot state”. The pivot
subtransaction is executed at the bank of the customer,
where payment of the customer may be
accepted/committed and a retriable subtransaction to the
seller initiated. When the retriable subtransaction of the
pivot is received in the location of the seller, the State
record of the global transaction is changed to “Retriable
state”, and the account of the customer updated. A
retriable sub-subtransaction may also be initiated in order
to confirm the deal for the customer.

4. Conclusions

Normally, distributed systems do not have the
traditional ACID properties because they will reduce
availability and write performance. In this paper, we
recommend using approximated ACID properties, i.e.
from an application point of view the system should
function as if all the traditional ACID properties had been
implemented.

The distributed approximated atomicity property
manages the workflow of a distributed transaction in such
a way that either all the updates of the transaction are
executed (sooner or later) or all the updates of the
transaction are removed/compensated. In this paper, we
have described in detail how distributed approximated
atomicity may be implemented. That is, we have
described a nested transaction pattern (algorithm)
designed for updating multidatabases with approximated
atomicity. The transaction pattern can be used for all
types of distributed updates, and, therefore, it may reduce
time for design and programming. Our transaction pattern
makes it possible to nest all types of subtransactions to
any depth, In addition, the root location (normally the PC
of the user), the log location (the location where the
recovery information is stored) and the pivot location (the
location where the global transaction is committed) may
be different locations or grouped in any combination.
Another feature is that our transaction pattern allows
retriable subtransactions to be executed before the global
commit if the retriable subtransactions more or less
compensate compensatable subtransactions that have
already been committed locally but not globally.

We have illustrated how to use the transaction pattern
in E-commerce systems. For example, if one of the
partaking subsystems fails in a system for E-commerce,
the approximated atomicity property will ensure that
when an order is accepted (the global commit), the stock
levels, payment etc., are managed automatically in the
locations of the partaking product stocks and banks. Even
logistics and/or production workflow may be managed by
using approximated atomicity.

We have cooperated with one of the major ERP
software companies in designing a distributed version of
the ERP system with local autonomous databases in the
different sales and stock locations.

References
[1] L. Frank and T. Zahle, ‘Semantic ACID Properties in
Multidatabases Using Remote Procedure Calls and
Update Propagations’, Software - Practice & Experience,
1998, 28, pp77-98.
[2] H. Garcia-Molina and K. Salem, ’ Sagas’, ACM
SIGMOD Conf, 1987, pp 249-259.
[3] S. Mehrotra, R. Rastogi, H. Korth and A.
Silberschatz, ‘A Transaction Model for Multidatabase
Systems’, Proc International Conference on Distributed
Computing Systems, 1992, pp 56-63.
[4] G. Weikum and H. J. Schek, ‘Concepts and
Applications of Multilevel Transactions and Open Nested
Transactions’, A. Elmagarmid (ed.): Database
Transaction Models for Advanced Applications, Morgan
Kaufmann, 1992, pp 515-553.
[5] A. Zhang, M. Nodine, B. Bhargava and O. Bukhres,
‘Ensuring Relaxed Atomicity for Flexible Transactions in
Multidatabase Systems’, Proc ACM SIGMOD Conf,
1994, pp 67-78.
[6] L. Frank, ‘Integration of Different Commit/Isolation
Protocols in CSCW Systems with Shared Data’,
Perspectives of System Informatics, Third International
Andrei Ershov Memorial Conference, PSI’99, Springer-
Verlag, pp 341-351.
[7] J. Gray and A. Reuter, Transaction Processing,
Morgan Kaufman, 1993.

[8] H. Berenson and P. Bernstein, J. Gray, J. Melton, E.
O’Neil and P. O’Neil, ‘A Critique of ANSI SQL
Isolation Levels’, Proc ACM SIGMOD Conf, 1995, pp 1-
10.
[9] Y. Breibart, H. Garcia-Molina and A. Silberschatz,
‘Overview of Multidatabase Transaction Management’,
VLDB Journal, 2, 1992 pp 181-239.
[10] L. Frank, ‘Integrity Problems in Distributed
Accounting Systems with Semantic ACID Properties’,
Proc. Third Annual IFIP TC-11 WG 11.5 Working
Conference: Integrity and Internal Control in INF
Systems, Amsterdam, The Netherlands, November 18-19,
1999.
[11] L. Frank, ‘Evaluation of the Basic Remote Backup
and Replication Methods for High Availability
Databases’, Software - Practice & Experience, Vol. 29,
issue 15, 1999, pp 1339-1353.
[12] Wil van der Aalst, Process-Oriented Architectures
for Electronic Commerce and Interorganizational
Workflow, Information Systems, Vol. 24, No. 8, pp.
6399-671, 1999.
[13] V. Zwass, Electronic commerce: structures and
issues, International Journal of Electronic Commerce,
Vol. 1, No. 1, pp. 3-23, 1996.
[14] L. Frank, ‘Atomicity Implementation in Cooperative
Distributed Systems With High Performance and
Availability’, Proc of Collaborative Technology
Symposium 2002, January 2002.

