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Abstract 

Multi-issue negotiation may produce mutual beneficial 
results to both negotiators while single-issue negotiation 
can not. However, there are difficulties in automating a 
multi-issue negotiation, since the search space grows 
dramatically as the number of issues increases. Although 
many concession strategy learning mechanisms have been 
proposed to deal with the problem, recent research 
uncovered that the fixed strategy of concession and the 
fixed-pie bias are the two major interferences in the 
automation of multi-issue negotiation. It is suggested that 
the lack of communication between agents may have 
impeded information sharing and joint-problem solving 
possibilities. 

In this paper, we show that the fixed-pie bias can 
interfere with the negotiation outcome if there are 
non-conflicting issues. We propose a new negotiation 
model and an innovative algorithm that not only allows 
information to be shared in a controlled way, but also 
allows the information shared to be effectively used for 
conducting a systematic search over the negotiation 
problem space. The combined mechanism is capable of 
using strategies learned from counter-offers and is 
immune to the fixed-strategy limitation and the fixed-pie 
bias. It contributes to the automation of multi-issue 
negotiation in the context of open and dynamic 
environments. 
 
1. Introduction  

Negotiation is a human behavior existed since there is 
trade. People exchange products in order to give out what 
they have for what they need. In the age of electronic 
commerce, negotiation has been automated by software 
agents or supported by negotiation support systems (NSS). 
Research [10] [16] [11] [5] indicated that these 
automation mechanisms were able to reduce significantly 
the negotiation time and alleviate the negative effects of 
human cognitive bias and limitation. The evolution went 
from single-issue negotiation to multi-issue negotiation. 
In a single-issue negotiation, the term negotiated is limited 
to price. Although this kind of negotiation works for some 
cases such as auction houses, most companies on the 
Internet are generally against it since it brings out price 
wars that not only causes chaos in markets but also 
ignores the importance of other issues such as warranty 
period and delivery time. 

Multi-issue negotiation becomes an important 
research area in the e-commerce domain, since it is more 

beneficial comparing to single-issue negotiation [14]. 
However, there are difficulties in automating a multi-issue 
negotiation. Take a bilateral multi-issue negotiation, 
where there is a buyer and a seller performing a 
one-to-one negotiation, for example. Issues can be 
negotiated sequentially or simultaneously. The 
issue-by-issue approach suffers the drawback of being 
unable (or costly) to go back to already negotiated issues. 
Hence it is inappropriate for solving problems with 
inter-dependent issues. In the simultaneous approach, on 
the other hand, negotiators get lost easily in the complex 
decision tree of concessions, and the search space grows 
dramatically as the number of issues increases. Since we 
assume self-interested agents, an agent will not disclose 
his utility function, being afraid of the fact that the 
opponent will take advantage of it to squeeze surplus out 
of him. Given the situation, the only information disclosed 
are the offers proposed and the information of acceptance 
or rejection on the proposed offers. An algorithm is 
required to search the negotiation problem space for 
mutual beneficial agreements base on the limited 
information. Adopting the simultaneous approach, there 
are three types of algorithms: 

1. Brute force: suppose that a buyer is bidding for 
goods from a seller. He then queries the seller for 
acceptance of each offer in mind, from the one with 
highest utility to the one with lowest. The seller may 
accept it or reject it. This process continues until the buyer 
has run out of alternatives. To speed up the process, the 
seller can counter-offer using the same method as the 
buyer. Once an offer is accepted by one of two players, the 
negotiation ends. This approach is similar to the 
continuous double auction used in Kasbah [2], and may 
work fine in the single-issue negotiation without time 
constraints (i.e. deadline, bargaining cost, etc.). However, 
it is hardly applicable to the multi-issue negotiation since 
there are generally too many alternatives generated by 
combining options of all the issues. Simply generating and 
sorting them will require a lot of memory space, not to 
mention querying them one by one, which can be very 
time-consuming. 

2. Use a concession strategy learned from past 
negotiations: this approach works great if the market is 
static, which means that the general utility function of 
buyers/sellers does not change radically over time. 
Although we do not know exactly the utility function of 
the opponent, we learn from past negotiations to get the 
best concession strategy that can both speed up the 
negotiation and get better outcomes. However, if the 
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market is dynamic, this fixed strategy may not achieve 
mutually beneficial outcomes each time, since different 
opponents may have quite different utility functions over 
the various issues. Research [13] [12] [17] belongs to this 
type. 

3. Use a concession strategy learned from counter 
offers: although rarely seen in the research, it is possible to 
learn a concession strategy from counter offers within a 
negotiation session. The rationale behind it is to find out 
which terms are important (weighted more in the utility) to 
the opponent, but less important to us. Conceding on these 
issues increases the possibility of being accepted by the 
opponent, while preserving our interests. Research [4] 
uses similarity criteria to make issue trade-offs; it is 
believed that by making an offer similar to the one by the 
opponent can approximate the preference structure of the 
opponent. 

In an open and dynamic environment, such as the 
Internet, the third type algorithm becomes important. Goh 
et al. [6] conducted an experimental study on 
computer-supported bargaining in the context of 
electronic commerce, and uncovered that the fixed 
strategy of concession and the fixed pie bias are the two 
major interferences in the automation of negotiation. It is 
suggested that the lack of communication between agents 
may have impeded information sharing and joint-problem 
solving possibilities. The problem of fixed strategy has 
been addressed later in [4] (though the existence of too 
many assumptions has caused their research to be less 
applicable to real cases). However, the joint-problem 
solving possibilities are still constrained by the fixed-pie 
bias and the information shared. 

In this paper, we propose a new negotiation model and 
an innovative algorithm that not only allows information 
to be shared in a controlled way, but also allows the 
information shared to be effectively used for conducting a 
systematic search over the negotiation problem space. The 
combined mechanism is capable of using strategies 
learned from counter-offers and is immune to the 
fixed-strategy limitation and fixed-pie bias. It contributes 
to the automation of multi-issue negotiation in the context 
of open and dynamic environments. 

The sections are organized as follows: section 2 firstly 
explains the rationale for information sharing. Section 3 
describes the negotiation model used, and section 4 gives 
details of the searching algorithm. Section 5 contains 
experimental analysis and finally the conclusion and 
future work is presented in section 6.  
 
2. The Rationale for Information Sharing 

In the context of Game Theory, the two-player 
bargaining game is defined as a non-cooperative game 
where two players attempt to divide a good, say a pie, 
between them. However, the pie-dividing concept may 
introduce the fixed-pie bias, which is a tendency for 
negotiators to assume that their own interests directly 
conflict with those of the other party [1] [18]. The problem 
caused by this bias seldom occurs in a bargaining since 

most of them are dealing with conflicting issues. Let us 
consider a more general two-player multi-issue 
negotiation problem, where the players not only negotiate 
for the price, but also a date for delivering the product. 
The utility gained from settling for a different date is 
illustrated in Figure 1. At the beginning, their preferences 
seemed to be conflicting; nevertheless, they managed to 
meet at day 7, which is the best solution for both of them. 
The f  curve occurs when a player wishes to get the 
product immediately or on a later date if he can not get it 
immediately. This example illustrates that sometimes the 
pie-dividing concept may be misguiding, causing both 
negotiators to neglect a mutually beneficial solution if 
they do not communicate. Same problems can occur when 
dealing with qualitative issues such as the choice of colors, 
since the utility gained by each color may not always be 
conflicting with the opponent’s preference. 

 

 
Figure 1. Non-conflicting utility case 
 
Research [4] was based on the pie-dividing concept; 

however, they allow different levels of importance to be 
attached to various negotiation decision variables. This 
makes the negotiation a non-zero-sum game, where 
players can find mutually beneficial agreements by 
making trade-offs over issues instead of conceding at the 
utility. That is to say, by increasing some decision 
variables in value and decreasing some others may create 
an offer that will benefit one or both of the players 
simultaneously. However, considering the above delivery 
time case, we find that a mutually beneficial offer can be 
found by simply increasing the utility of one of the 
decision variables without decreasing any other (instead 
of conceding, one can raise the utility of the new offer). In 
other words, better solutions can be found if we avoid the 
fixed-pie bias. Nevertheless, by avoiding the fixed-pie 
bias, we are again lost in the enormous possible paths of 
solution searching. It is our belief that, by disclosing a 
little more information, the player with less privacy 
concerns can improve the negotiation outcome, and 
therefore benefits himself. And it is also common that, in 
the real life situation, a player with less privacy concerns 
will simply release trade-off information, such as “you 
can deliver the product to me immediately or a week 
later.” 



 

 

One may argue that, in the above delivery date case, 
the opponent will propose the offer of day 7 eventually if 
you did not propose it, yet in the multi-issue case, there 
can be a lot of alternatives that it is too hard to enumerate 
them all. Therefore how the information can be shared in a 
systematic way such that the opponent can use it to 
improve the solution searching process is the major 
concern here. Besides, the information should be 
disclosed in a controlled way so that it not only matches 
our privacy preference but also complies with our 
negotiation strategy. To tackle this problem, we propose a 
new negotiation model and an innovative solution to the 
searching problem in the following sections. 
 
 
3. Tagged Multi-offer Negotiation Model 

In this section we first provide an overview of our 
negotiation model. Then we discuss the issues of time 
constraints and information states. 
 
3.1 The Negotiation Model 

The settings of our negotiation model are based on a 
non-cooperative, multi-stage, incomplete-information, 
and two-player bargaining game. Since this is a 
non-cooperative game, each player does his best to 
maximize his own interest and will not share information 
more with the other than necessary. We assume each 
player knows neither the other’s preferences on issues, 
nor the utility function; therefore it is a game with 
incomplete information. Given such a situation, in order to 
reach an agreement that is beneficial to both players, the 
negotiation will continue for more than one stage. 

Rubinstein proposed a multi-stage bargaining game 
[15], in which each player of the game proposes an offer 
in turn and the other may accept or reject it. The game will 
continue until an offer is accepted. Our model differs from 
[15] in that: Firstly, we allow multiple offers to be 
proposed at one time. For example, a seller can propose 
two offers at one time, saying “you can buy product A at 
price B with delivery time C or buy product A at price D 
with delivery time E”. The buyer may counter propose 
with sayings like “I can only buy product A at price F with 
delivery time G or buy product A at price H with delivery 
time K”. This relaxation of multiple alternating offers 
enables a player to disclose possible trade-off information 
over which the opponent can consider. It can speed up the 
searching process and avoid falling into local optima in 
the solution landscape too early. 

Besides the relaxation of multiple alternating offers, 
we allow players to tag information of their preferences 
over proposed offers. For example, a vector <<A, 3>, <B, 
2>, <C, 1>> indicates that offer A is the most preferred, 
offer B is the second most preferred, while offer C is the 
least preferred. We allow the multiple alternating offers 
and the tagging of preference information because we 
believe the information may be “necessary” for both 
players to reach an agreement that is beneficial to both of 
them. However, how much information will be shared is a 

decision made by the players. An elegant controlling 
mechanism is embedded in our searching algorithm 
(detailed in the next section), and it can be tuned 
according to the privacy preference of the player. 

Finally, the negotiation game will end in a known 
period of time, no matter whether an agreement has been 
reached. If an agreement has been reached before the 
deadline, the players will continue to improve it until the 
deadline. If no agreement has been reached before the 
deadline, the negotiation fails. If more than one agreement 
has been reached, the latest one is chosen. This design 
permits better solutions to be found after the first 
agreement has been reached. 

We name this negotiation model a TAMON (TAgged 
Multi-Offer Negotiation) model.  
 
3.2 Time Constraints 

Rubinstein’s model has a basic assumption that ‘time’ 
is valuable during the negotiation, and the fixed 
bargaining cost or fixed discounting factor may affect the 
strategy used in the bargaining. If each player has 
complete information about the preferences of the other, a 
weaker player (i.e. the one with higher fixed bargaining 
cost) will always lose. However, assuming each player 
does not know the preference structure of the other 
(incomplete information), the weaker player may try to 
cheat the other player by making the other player believe 
that he is actually stronger. 

To simplify the TAMON model (avoiding the 
consideration of time-related strategies), we assume the 
cost of time is negligible during a TAMON game. In other 
words, by choosing a reasonable period of time to play the 
negotiation game, it is possible for both players to agree 
that there can be no time constraints during the period of 
negotiation. By this simplification we make TAMON a 
micro negotiation game. It does not mean that there are no 
time constraints any more, but that the time constraints are 
omitted during the TAMON game. The time constraints 
still exist between the current TAMON game and the next 
TAMON game. That is to say, to achieve an agreement, 
both players can play a series of TAMON game that is 
time constrained. 

This simplification has two benefits: 
 
1. The environment is stable during a TAMON game; 

therefore players can focus on the searching and 
improving of solutions without the need to deal with 
changing environmental parameters. 

 
2. Existed time-dependent bidding strategies such as 

NDF [3] can be applied directly to a series of TAMON 
game without conflicting with “micro” level strategies 
used in the TAMON game. 
 

This assumption also indicates that the goal of micro 
level strategies will be to find a solution given the 
constraints from “macro” level strategies. And macro 
level strategies are applied on a series of TAMON game. 



 

 

 
3.3 The Information State 

Each player (let b  denotes buyer and s  denotes 
seller) in a TAMON game is modeled as a 5-tuple aI  with 
a utility function U , a utility threshold thresholdU , a degree 

of information sharing D , a micro level strategy S  and a 
mutually agreed period of time T  to play the game: 

 
{ }, , , , , , .a a a a a

thresholdI U U D S T where a b s= ∈ (1)
 
We define the utility function to be a sum of weighted 

contributions of N issues: 
 

[ ]
1 1

* , 0,1 1.
N N

i i i i
i i

U w u where u and w
= =

= = =∑ ∑ (2)

 
The utility contributed by each issue, however, is not 

necessarily depending only on the value of this specific 
issue, but also on the values of K other issues in the offer. 
The occurances of this interdependency will make it 
inappropriate to be negotiated in an issue-by-issue way. 

The micro level strategy S  is defined by the 
algorithm and the algorithm parameters used for 
generating and accepting offers (detailed in section 5). In 
this paper, we will assume there is only one choice of 
algorithm, the BGA (discussed in the next sub-section), 
and D  does not change during the series of TAMON 
game. Therefore the macro level strategies contain only 
functions determining the value of thresholdU . The search 
space bounded by thresholdU  in a TAMON game is 
illustrated in Figure 2. 

 

 

 

Figure 2. The Search Space in a TAMON Game 
 
 
4. The Bilateral Genetic Algorithm 

To search in the space of a TAMON game, we need a 
heuristic method that is computationally tractable; since 
the overall search space is too large that an exhaustive 
fashion of search is not possible. Considering a 
single-issue negotiation for delivery time in Figure 3, if 
both negotiators are using the same linear time-dependent 
macro level function for decreasing the thresholdU , their 
agreement can be found at the intersection of utility x . In 
this case, the offer generating process would be too simple 
that the micro level TAMON game can be set to propose 
only one offer in a turn and be played for only two turns 
(in the first turn, the buyer proposes and the seller accepts 

or rejects, in the second turn the seller proposes and the 
buyer accepts or rejects). However, in a multi-issue search 
space, it is almost impossible to generate all the offers 
with utility x  (while there are only two offers of utility 
x  evaluated using f  or g  in Figure 3, there can be a 
huge number of offers of utility x  in a multi-issue search 
space, especially when given nonlinear utility functions). 
Therefore, the searching algorithm can only propose some 
of them, and there is a great chance that the search 
algorithm will miss the right one. Suppose that a solution 
is guessed out at utility 'x  of time ''y  later, and then a 
mechanism will be required to back-search for the real 
optimal solution of utility x . The Bilateral Genetic 
Algorithm (BGA) is proposed to deal with this problem. 

 



 

 

 

Figure 3. The Matching Point 
 
4.1 Overview of BGA 

BGA is an algorithm for searching solutions to the 
TAMON problem. We apply the concepts of genetic 
algorithm (GA [8]) to the domain of offers. That is, we use 
a joint utility to express the fitness of an offer, and use an 
evolutionary approach to find out the best offer if possible. 
A very simple design of such an idea is to encode an offer 
into a single chromosome and let the fitness of it be the 
product (product is used instead of sum for fairness) of 
two utility values from the buyer and the seller. For 
example, let a chromosome {100, 5, 2, 3} (for readability, 
we use n-ary gene encoding) represents an offer with price 
of 100, quantity of 5 units, delivery time of 2 days and 
warranty period of 3 years. If the joint utility of this 
chromosome is high, the number of this individual will 
grow exponentially in the population, as stated in GA. 
And the population will eventually converge to the 
answers we want. 

However, since the agents are self-interested in our 
scenario, each agent does not share information of his 

utility with the other. Lacking the utility function from the 
other agent, an agent will not be able to determine the joint 
utility of a chromosome. Hence, both the buyer agent and 
the seller agent are not able to perform the selection using 
genetic operators on the population of offers. To 
overcome this problem, we propose an innovative 
algorithm BGA, which divides the population for 
evolution into a buyer side population and a seller side 
population, and uses two special genetic operators, 
B-selection and B-recombination, to handle the selection 
and recombination process in the presence of incomplete 
fitness function. Both agents must perform the genetic 
B-selection process and B-recombination process 
separately. The B-selected population will be proposed to 
the other player while the received population will be used 
to B-recombine with our B-selected population, as 
illustrated in Figure 4. The B-selection has a tunable 
sampling rate, which can select offers for proposing 
according to the D  parameter. We will discuss the details 
of each operation in the following sub-sections, and then 
explain why it works. 

Before we discuss the genetic operators used in BGA, 
we firstly define the parameters used in BGA: 

 
Population Size: .a

populationZ ∈  

Crossover Rate: [ ]0,1 .aR =  

Mutation Rate: [ ]0,1 .aM =  

Chromosomes: , 1 .a a
i populationC where i and i Z∈ ≤ ≤  

Again: { }, .a b s∈  
 

 

 

Figure 4. The BGA Evolution Process 



 

 

 
4.2 B-selection, B-recombination and B-mutation 

The selection process of a GA will produce a new 
population with the distribution of chromosomes being 
propotional to the fitness of each chromosome from the 
old one. The one with higher fitness gets higher 
probability to be selected in the resulted population. 
B-selection does a little more: it will propose the 
population of chromosomes to the other agent, and the 
size of it will be affected by the degree of information 
sharing (parameter D ). The actual size of population 
proposed is: 

 
.offers populationZ Z D = ×   (3)

 
During the agent communications, duplicated offers 

can be represented using a vector format <Offer, 
Number>. The B-selected population then becomes offers 
proposed to the other player in a tagged multi-offer format. 
The higher value in D , the richer information in the 
proposed offers. If offersZ  equals to 1, it becomes a normal 

alternating offer protocol that proposes only one offer a 
turn. 

The B-recombination operator differs from the GA 
recombination in that it recombines chromosomes from 
the different-side B-selected populations. In other words, 
one of the parent chromosomes comes from the buyer-side 
B-selected population while the other from the seller-side 
B-selected population. Since the population B-selected by 
the other agent might have different size from ours, both 
the received population and our B-selected population are 
rescaled to half of our population size before they can be 
put together into a joined population of size 

populationZ  (see 

Figure 5). The joined population is then ready for 
B-recombination. It should be noted that, each agent 
might have a joined population of different size, since 
their 

populationZ  values might be different. 

 

 

Figure 5. The Joined Population 
 

 

Figure 6. Performing B-recombination 
 
B-recombination of two chromosomes produces 

chromosomes that represent offers applying different 
concession strategies. For example, recombining a buyer 
proposal {100, 4, 2, 4} with a seller proposal {120, 3, 2, 2} 
may produce a proposal {100, 3, 2, 2} denoting that the 
seller concedes at the price of value 100, and a proposal 
{120, 4, 2, 4} denoting that the seller concedes at quantity, 
delivery time and warranty period. Each agent performs 
B-recombination at his own memory space; therefore the 
crossover rates can be different at the two sides. After the 
B-mutation process, the newly generated population then 
replaces the old one (noted that the first generation is 
randomly generated). The B-mutation is similar to the GA 
mutation process except that it is performed separately at 
both sides. 

We use uniform crossover in B-recombination, 
although it is considered to be maximally disruptive when 
the epistatic interactions are the nearest neighbors [9]. We 
believe it is required in our scenario, because it helps the 
B-recombination generate more possibilities of 
concessions assuming that the two negotiating agents may 
have different information spaces. For example, if the 
buyer can propose only one chromosome {A, B, C}, and 
the seller can propose only one chromosome {D, E, F}, 
uniform crossover makes it possible to generate a 
chromosome with {A, E, C} while one-point crossover 
cannot. 

In the final algorithm, the B-selection is actually 
processed twice (Figure 7) by an agent in a turn; one for 
proposing offers, and one for generating half of 
population for next join. We need to separate these two 
populations since the proposed one is bounded by the 
utility threshold while the reserved one for next join is not. 
The detail of the algorithm is not explained in this paper. 
For interested readers, please check the web site: 
http://homepage.ntu.edu.tw/~d85725004/BGA.html. 

 

 



 

 

 
 

 
Figure 7. The BGA algorithm 

 
4.3 Preliminary Agreements 

At the beginning of a BGA process, all chromosomes 
(i.e. offers) with utility higher than or equal to thresholdU  

are assigned a fitness value 0.99*threshold thresholdF U= . 
The coefficient 0.99 is designed to make the fitness value 
a little smaller than the thresholdU . Once a preliminary 
agreement (a proposed offer that is accepted) is reached, 
the associated chromosome will be given fitness equals to 
its real utility, which is higher than thresholdF . The number 
of this chromosome will then start to increase because of 
its high utility (further explained in the next sub-section). 
The discovery of a preliminary agreement also causes the 
value of thresholdU  to climb up to the utility equaling to the 
one of the preliminary agreement. This climbing behavior 
ensures that the newly proposed offers will have a higher 
utility than preliminary agreements. It is the 
back-searching mechanism mentioned in the first 
paragraph of this section. In the view of macro level 
strategies, the value of thresholdU  often goes down 
(decreasing) and does not go up, only when some 
preliminary agreement has been reached, it then makes 
sense to revert the thresholdU  to the new high utility 
reached. This action is named a utility threshold reverting.  
 
4.4 Implicit Parallelism in BGA 

The main idea of BGA is to utilize the implicit 
parallelism of GA to explore all possible concession 
strategies and accumulate useful building blocks [7] at one 

time. Implicit parallelism, named by Holland [8], is a 
property that: 

…Even though each generation we perform 
computation proportional to the size of the population, 
we get useful processing of something like n3 schemata 
in parallel with no special bookkeeping or memory 
other than the population itself… 

In BGA, only preliminary agreements contain useful 
building blocks that need to be accumulated in the later 
search. That is why we restore fitness of chromosomes to 
their actual utility value after they are found to be 
preliminary agreements (before that, all fitness values are 
lower than thresholdU ). 

By B-recombining chromosomes from two 
populations of different sides, chromosomes representing 
various offer-improving possibilities are generated. The 
offer-improving behavior is a little bit like the similarity 
approximation in [4], since B-recombination try to 
generate an offer by recombining chromosomes from the 
two different populations and the resulted chromosomes 
will be similar to their parents. In fact, the BGA algorithm 
does a better job then [4] for locating offers similar to the 
opponent’s. Because research [4] try to find similar offers 
by decreasing the utility distance, which is impossible if 
certain kinds of information about the opponent’s utility 
function is unavailalbe. Their simulations work simply 
because there are too many assumptions (linear, 
conflicting, same value range and equal discrimination 
power over the reservation values) being placed on the 
opponent’s utility function in their research. It makes the 
assumption of “incomplete information” quite weak. 



 

 

B-recombination does not have a fixed-pie bias, since 
it does not assume a utility conceding is necessary when 
trying to generate an alternative. In fact, the BGA never 
decrease the utility of new offers, and try to increase the 
utility whenever possible. Once an offer acceptable to 
both sides is found, the utility threshold is increased, and 
the useful genetic information in the offer will then be 
accumulated in an evolutionary way. 

To conclude, BGA can deal with the searching 
problem of a TAMON game in a computationally tractable 
way, and no specific assumptions are placed upon the 
utility function of the opponent. 
 
5. Experimental Analysis  

A negotiation case with mixed (including linear and 
nonlinear) utility function is prepared to test the capability 
of BGA. The utility functions for 5 issues in buying a car 
are listed in Table 1 (for simplicity, some of the functions 
are not showed in detail; mechanisms used to ensure the 
range of each utility value are omitted; for interested 
readers, complete source codes can be found at 
http://homepage.ntu.edu.tw/~d85725004/BGA.html). 
Two exceptions are added to override the default utility 
functions. They provide extra interdependency among 
these issues, and are the epistatic interactions as explained 
in [9]. 

 
Table 1. Utility functions 

 Buyer Seller 
Price (200 - ( (v*v)/200 )) 

/200 
(v-20)/300 

Time Cos( (2*Pi* 
(v mod 7))/7 ) 

Sin( (2*Pi* 
(v mod 30))/30 ) 

Type {0.1, 0.2, 0.9, 0.5, 
0.1} 

v/4 

Color {0.3, 0.4, 0.2, 0.7, 
0.9} 

{0.5, 0.5, 1, 0.5, 0.5}

Option (10-v)/10 v/10 
Exceptions If (Type = 1) and 

(Color = 2) then both 
issues get an utility 
value of 0.9. 

If (Time = 77) and 
(Type = 1) then both 
issues get an utility 
value of 1. 

 
Eighteen combinations of parameters (Table 2) are 

used to run the simulations. They are designed to answer 
the following questions: 

1. Should I be the first mover? (should I propose offers 
firstly?) 

2. How do I propose? (how much information can be 
disclosed?) 

3. How do I response? (how much information should 
be fed back to the opponent regarding his proposing?) 

In question 2, the degree of information sharing 
determines the sampling rate for proposing offers in mind, 
and in question 3, the feedback rate of preliminary 
agreements determines how much information regarding 
one’s evaluation on the opponent’s offers will be fed back 
to him. 

 

Table 2. Experiment parameters 
Q Parameter Name Parameters
1 First Mover seller first 

buyer first
2 Degree of Information Sharing 

(DoIS for short) 
1 (all) 
0.1 
0.0025 

3 Feedback of Preliminary Agreements 
(FoPA) 

1 (all) 
0.5 
0.1 

 
As expected, the first mover has disadvantage in the 

TAMON game. The explanation is intuitive: since the first 
mover shares information firstly, the opponent is then able 
to increase his utility threshold firstly when preliminary 
agreements are found in the first turn. Readers can 
compare Figure 8 and Figure 9 to find out the difference 
(noted that the X-axis in them represents the product of 
DoIS and FoPA, and Y-axis the utility). 

 

 
Figure 8. Buyer utility 

 

 
Figure 9. Seller Utility 

 
Judging from the results showed in the following 

Figure 10 (FoPA = 1) and Figure 11 (DoIS = 1), we can 
conclude that the effects of information sharing have 
higher impact on the negotiation results then feedbacks. 
The reason lies at that the number of preliminary 
agreements is small comparing to the proposed offers. 
Since both negotiators tend to decrease the utility 
threshold slowly in the progress of negotiation, the 
number of preliminary agreements can not be very large. 
We also found that the degree of information sharing need 



 

 

not to be very high for satisfactory negotiation results to 
be gained. 
 

 
Figure 10. Effects of information sharing 

 

 
Figure 11. Effects of feedback 

 
In Figure 12 (X-axis represents the buyer utility and 

Y-axis the seller utility, assuming FoPA = 1), the BGA 
simulation results are compared to GA simulations with 
same crossover rate (0.7) and mutation rate (0.02). Both 
population sizes are set to 400. In GA simulations, 
however, the algorithm has complete information of both 
negotiators’ utility functions, and the product of buyer 
utility and seller utility is used as the fitness value. 1000 
generations were run for the GA simulations while a 
period of 10 seconds was used  in each micro level 
TAMON game simulation. We assume same bargaining 
power in the BGA simulations, therefore the utility 
threshold decreases at same speed (0.1 per micro level 
game) for both negotiators. Both GA and BGA 
simulations were run 30 times to get the average 
negotiation results in Table 3. The best result found by the 
brute force algorithm (testing all combinations) is also 
marked on Figure 12. 

 
Table 3. Simulation  results 

 Buyer Utility * 
Seller Utility (Avg) 

Ratio 

Best 0.532946667 1 
GA 0.520159512 0.976006689 
BGA-1 0.508617115 0.954348993 
BGA-0.5 0.491376085 0.921998608 
BGA-0.0025 0.397237238 0.745360207 

 
Figure 12. BGA simulations 

 
The results in Table 3 show that BGA performs better 

when information is shared via the TAMON protocol. In 
the last case, where the degree of information sharing 
equals to 0.0025, only one offer was proposed in a turn 
(same as traditional negotiation model), and the ratio of 
average negotiation results drops dramatically. However, 
it is also found that by extending the TAMON game 
period, the results can be improved (see Figure 13, X-axis 
represents the degree of information sharing, and Y-axis 
the resulting utility product). 

 

 
Figure 13. Effects of negotiation period 

 
6. Conclusion and Future Work 

We proposed the TAMON negotiation model and the 
BGA algorithm in this paper. The TAMON model defines 
a micro two-player negotiation game without time 
constraints, and allows more information to be exchanged 
in the negotiation game. The exclusion of time constraints 
is important for simplifying a TAMON game, since most 
search algorithms are not of real-time, and the search 
space tends to be static during the searching. It also 
permits a more complex search process to be conducted in 
a TAMON game, with a constraint that the process should 
be terminated after a period of time. By allowing more 
information to be disclosed in a tagged multi-offer format, 
the TAMON model incorporates the information sharing 
behavior into the negotiation model. We can say that the 
TAMON model provides a dimension for joint problem 
solving possibilities, yet it is still in the context of a 
non-cooperative game. 



 

 

The BGA proposed in this paper utilizes the implicit 
parallelism of GA to search the solutions in a TAMON 
game. The elegance of the BGA is that it perfectly fits in 
the TAMON game since the population to be proposed is 
meaningfully transformed into the tagged multi-offer 
format, and with the degree of information sharing being 
taken into consideration. The algorithm is immune to the 
fixed-strategy limitation and the fixed-pie bias, and it is 
computationally tractable. It should be noted that it is not 
required that both players use the same algorithm in the 
negotiation. However, since the BGA can explore 
multiple strategies simultaneously, we are investigating 
that given the limitation of computational tractability, 
whether the BGA-like algorithm will be the only rational 
choice in a TAMON game. 

We are developing a theory to measure the information 
disclosed in the tagged multi-offer protocol and to 
determine the precise effects caused by the information 
sharing in a multi-issue negotiation. A theory for guiding 
the choosing of BGA parameters, including the population 
size, the crossover rate and the mutation rate will also be 
addressed in the future work. 
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