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Abstract—By uncertain programming we mean the op-
timization theory in generally uncertain (random, fuzzy,
rough, fuzzy random, etc.) environments. The main
purpose of this paper is to present a brief review on
uncertain programming models, and classify them into
three broad classes: expected value model, chance-
constrained programming and dependent-chance pro-
gramming. This presentation is based on the book: B.
Liu, Theory and Practice of Uncertain Programming, Phisica-
Verlag, Heidelberg, 2002.

Keywords—stochastic programming, fuzzy program-
ming, uncertain programming, hybrid intelligent algo-
rithm

I. Introduction

Real-life decisions are usually made in the state of un-
certainty. How do we model optimization problems in
uncertain environments? How do we solve these mod-
els? Uncertain programming theory attempts to answer
these questions.

By uncertain programming we mean the optimiza-
tion theory in uncertain environments. The main top-
ics of uncertain programming are stochastic program-
ming, fuzzy programming, rough programming, fuzzy
random programming, random fuzzy programming, ran-
dom rough programming, rough random programming,
fuzzy rough programming, rough fuzzy programming,
birandom programming, bifuzzy programming, birough
programming, and multifold uncertain programming.

With the requirement of considering randomness, ap-
propriate formulations of stochastic programming have
been developed to suit the different purposes of man-
agement. The first type of stochastic programming is
the expected value model (EVM), which optimizes the ex-
pected objective functions subject to some expected
constraints. The second, chance-constrained programming
(CCP), was pioneered by Charnes and Cooper [8] as
a means of handling uncertainty by specifying a con-
fidence level at which it is desired that the stochastic
constraint holds. In practice, there usually are multiple
events in a complex stochastic decision system. Some-
times the decision-maker wishes to maximize the chance
functions of satisfying these events. In order to model
this type of problem, Liu [39] provided a theoretical
framework of the third type of stochastic programming,
called dependent-chance programming (DCP).

Fuzzy programming offers a powerful means of han-
dling optimization problems with fuzzy parameters.
Fuzzy programming has been used in different ways in
the past. Liu and Liu [57] presented a concept of ex-
pected value operator of fuzzy variable and provided a
spectrum of fuzzy EVM. Following the idea of stochas-
tic CCP, in a fuzzy decision system we assume that the
fuzzy constraints will hold with a possibility level. Thus
we have a fuzzy CCP theory. Analogously, following the
idea of stochastic DCP, Liu [46] provided the fuzzy DCP
theory.

Rough set theory, initialized by Pawlak [71], has been
proved to be an excellent mathematical tool dealing with
vague description of objects. A fundamental assumption
in rough set theory is that any object from a universe is
perceived through available information, and such infor-
mation may not be sufficient to characterize the object
exactly. Liu [56] presented a concept of rough space, and
defined a rough variable as a measurable function from
a rough space to the real line. Expected value operator
of rough variable and trust measure of rough event are
also suggested. Rough programming is thus proposed.

More generally, Liu [48][56] laid a foundation for op-
timization theory in uncertain environments, and called
such a theory uncertain programming.

Fuzzy random variable was developed by Kwakernaak
[31][32], and defined as a measurable function from a
probability space to a collection of fuzzy variables. Fuzzy
random programming is the theory dealing with opti-
mization problems in fuzzy random environments, and
has been made in several ways. We will introduce the
theoretical framework of fuzzy random EVM (Liu and
Liu [61]), fuzzy random CCP (Liu [54]), and fuzzy ran-
dom DCP (Liu [55]).

Random fuzzy variable was initialized by Liu [56], and
defined as a function from a possibility space to a col-
lection of random variables. That is, a random fuzzy
variable is a fuzzy variable defined on the universal set
of random variables. As a tool of handling random fuzzy
decision problems, random fuzzy programming includes
random fuzzy EVM (Liu and Liu [60]), random fuzzy
CCP (Liu [56]), and random fuzzy DCP (Liu [58]).

In addition to fuzzy random variable and random
fuzzy variable, we have also other types of multifold
uncertain variables: random rough variable, rough ran-
dom variable, fuzzy rough variable, rough fuzzy vari-
able, birandom variable, bifuzzy variable, and birough
variable. Thus we have random rough programming,
rough random programming, fuzzy rough programming,
rough fuzzy programming, birandom programming, bi-
fuzzy programming, birough programming, and multi-
fold (three-fold, four-fold, etc.) uncertain programming
(Liu [56]).

II. Various Types of Uncertainty

Fuzzy variable ξ is defined as a function from a pos-
sibility space (Θ,P(Θ), Pos) to the real line <. Let
ã1, ã2, · · · , ãn be fuzzy variables, and fj : <n → < be con-
tinuous functions, j = 1, 2, · · · , m. Then the possibility of
the fuzzy event characterized by fj(ã1, ã2, · · · , ãn) ≤ 0, j =
1, 2, · · · , m is defined by

Pos {fj(ã1, ã2, · · · , ãn) ≤ 0, j = 1, 2, · · · , m}

= sup
x1,x2,···,xn∈<

{
min

1≤i≤n
µãi

(xi)
∣∣ fj(x1, x2, · · · , xn) ≤ 0

j = 1, 2, · · · , m

}
.
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The necessity of a fuzzy event is defined as the impossi-
bility of the opposite event. Thus a necessity measure
is the dual of possibility measure. The credibility of a
fuzzy event is defined as the average of its possibility
and necessity, i.e., Cr{·} = 1

2
(Pos{·}+ Nec{·}).

Liu and Liu [57] presented an expected value operator of
fuzzy variable. The expected value of ξ is defined by

E[ξ] =

∫ +∞

0

Cr{ξ ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r}dr. (1)

Fuzzy random variables are mathematical descriptions
for fuzzy stochastic phenomena, and are defined in sev-
eral ways. Kwakernaak [31][32] first introduced the no-
tion of fuzzy random variable. This concept was then
developed by Puri and Ralescu [75], Kruse and Meyer
[30], and Liu and Liu [59]. Liu and Liu [59] presented a
definition of scalar expected value operator and several
types of law of large numbers for fuzzy random variables.
Liu [54][55] provided a concept of primitive chance mea-
sure of fuzzy random event.

Liu [56] initialized the concept of random fuzzy vari-
able which is a function from a possibility space to a
collection of random variables. The primitive chance
measure of random fuzzy event was defined by Liu [56]
as a function from [0,1] to [0,1]. The expected value op-
erator of random fuzzy variable was given by Liu and
Liu [60].

Let Λ be a nonempty set, A be a σ-algebra of subsets
of Λ, ∆ be an element in A, and π be a nonnegative,
real-valued, additive set function. Then (Λ, ∆,A, π) is
called a rough space. A rough variable ξ is defined by
Liu [56] as a measurable function from the rough space
(Λ, ∆,A, π) to the real line <. The lower and the upper
approximations of the rough variable ξ are then defined
as follows,

ξ =
{

ξ(λ)
∣∣ λ ∈ ∆

}
, ξ =

{
ξ(λ)

∣∣ λ ∈ Λ
}

. (2)

Let � be a rough vector on the rough space (Λ, ∆,A, π),
and fj : <n → < be continuous functions, j = 1, 2, · · · , m.
Then the upper trust of the rough event characterized
by fj(�) ≤ 0, j = 1, 2, · · · , m is defined by

Tr

{
fj(�) ≤ 0
j = 1, 2, · · · , m

}
=

π {λ ∈ Λ|fj(�(λ)) ≤ 0, j = 1, 2, · · · , m}
π {Λ} .

Let � be a rough vector on the rough space (Λ, ∆,A, π),
and fj : <n → < be continuous functions, j = 1, 2, · · · , m.
Then the lower trust of the rough event characterized
by fj(�) ≤ 0, j = 1, 2, · · · , m is defined by

Tr

{
fj(�) ≤ 0
j = 1, 2, · · · , m

}
=

π {λ ∈ ∆|fj(�(λ)) ≤ 0, j = 1, 2, · · · , m}
π {∆} .

If π{∆} = 0, then we define

Tr {fj(�) ≤ 0, j = 1, 2, · · · , m} ≡ Tr {fj(�) ≤ 0, j = 1, 2, · · · , m} .

Let � be a rough vector on the rough space (Λ, ∆,A, π),
and fj : <n → < be continuous functions, j = 1, 2, · · · , m.
Then the trust of the rough event is defined as the av-
erage value of the lower and upper trusts.

Let ξ be a rough variable on the rough space
(Λ, ∆,A, π). The expected value of ξ is defined by

E[ξ] =

∫ +∞

0

Tr{ξ ≥ r}dr −
∫ 0

−∞
Tr{ξ ≤ r}dr. (3)

A random rough variable is defined by Liu [56] as a
function ξ from a rough space (Λ, ∆,A, π) to a collection
of random variables such that for any Borel set B of <,

ξ∗(B)(λ) = Pr {ξ(λ) ∈ B} (4)

is a measurable function of λ. Let ξ be a random rough
variable defined on the rough space (Λ, ∆,A, π). Then its
expected value E[ξ] is defined by

∫ ∞

0

Tr {λ ∈ Λ|E[ξ(λ)] ≥ r}dr−
∫ 0

−∞
Pr {λ ∈ Λ|E[ξ(λ)] ≤ r}dr.

Let � = (ξ1, ξ2, · · · , ξn) be a random rough vector on the
rough space (Λ, ∆,A, π), and fj : <n → < be continu-
ous functions, j = 1, 2, · · · , m. Then the primitive chance
of random rough event characterized by fj(�) ≤ 0, j =
1, 2, · · · , m is a function from [0, 1] to [0, 1], defined as

Ch {fj(�) ≤ 0, j = 1, 2, · · · , m} (α)

= sup

{
β

∣∣ Tr

{
� ∈ Λ

∣∣ Pr

{
fj(�(�)) ≤ 0

j = 1, 2, · · · , m
}
≥ β

}
≥ α

}
.

(5)
A rough random variable is defined by Liu [56] as a

function ξ from a probability space (Ω,A, Pr) to a collec-
tion of rough variables such that for any Borel set B of
<,

ξ∗(B)(ω) = Tr {ξ(ω) ∈ B} (6)

is a measurable function of ω. Let ξ be a rough random
variable defined on the probability space (Ω,A, Pr). Then
its expected value E[ξ] is defined by

∫ ∞

0

Pr {ω ∈ Ω|E[ξ(ω)] ≥ r}dr−
∫ 0

−∞
Pr {ω ∈ Ω|E[ξ(ω)] ≤ r}dr.

Let � = (ξ1, ξ2, · · · , ξn) be a rough random vector on
the probability space (Ω,A, Pr), and fj : <n → < be
continuous functions, j = 1, 2, · · · , m. Then the prim-
itive chance of rough random event characterized by
fj(�) ≤ 0, j = 1, 2, · · · , m is a function from [0, 1] to [0, 1],
defined as

Ch {fj(�) ≤ 0, j = 1, 2, · · · , m} (α)

= sup

{
β

∣∣ Pr

{
! ∈ Ω

∣∣ Tr

{
fj(�(!)) ≤ 0

j = 1, 2, · · · , m
}
≥ β

}
≥ α

}
.

A fuzzy rough variable is defined by Liu [56] as a func-
tion ξ from a rough space (Λ, ∆,A, π) to a collection of
fuzzy variables such that for any Borel set B of <,

ξ∗(B)(λ) = Pos {ξ(λ) ∈ B} (7)

is a measurable function of λ. Let ξ be a fuzzy rough
variable defined on the rough space (Λ, ∆,A, π). Then its
expected value E[ξ] is defined by

∫ ∞

0

Tr {λ ∈ Λ|E[ξ(λ)] ≥ r}dr−
∫ 0

−∞
Tr {λ ∈ Λ|E[ξ(λ)] ≤ r}dr.

Let � = (ξ1, ξ2, · · · , ξn) be a fuzzy rough vector on the
rough space (Λ, ∆,A, π), and fj : <n → < be continu-
ous functions, j = 1, 2, · · · , m. Then the primitive chance
of fuzzy rough event characterized by fj(�) ≤ 0, j =
1, 2, · · · , m is a function from [0, 1] to [0, 1], defined as

Ch {fj(�) ≤ 0, j = 1, 2, · · · , m} (α)

= sup

{
β

∣∣ Tr

{
� ∈ Λ

∣∣ Pos

{
fj(�(�)) ≤ 0

j = 1, 2, · · · , m
}
≥ β

}
≥ α

}
.



A rough fuzzy variable is defined by Liu [56] as a func-
tion from a possibility space (Θ,P(Θ), Pos) to a collec-
tion of rough variables. Let ξ be a rough fuzzy variable
defined on the possibility space (Θ,P(Θ), Pos). The ex-
pected value E[ξ] is defined by

∫ ∞

0

Cr{θ ∈ Θ|E[ξ(θ)] ≥ r}dr −
∫ 0

−∞
Cr{θ ∈ Θ|E[ξ(θ)] ≤ r}dr.

Let � = (ξ1, ξ2, · · · , ξn) be a rough fuzzy vector on the
possibility space (Θ,P(Θ), Pos), and fj : <n → < be con-
tinuous functions, j = 1, 2, · · · , m. Then the primitive
chance of rough fuzzy event characterized by fj(�) ≤
0, j = 1, 2, · · · , m is a function from [0, 1] to [0, 1], defined as

Ch {fj(�) ≤ 0, j = 1, 2, · · · , m} (α)

= sup

{
β

∣∣ Pos

{
� ∈ Θ

∣∣ Tr

{
fj(�(�)) ≤ 0

j = 1, 2, · · · , m
}
≥ β

}
≥ α

}
.

A birandom variable is a function ξ from a probability
space (Ω,A, Pr) to a collection of random variables such
that for any Borel set B of <,

ξ∗(B)(ω) = Pr {ξ(ω) ∈ B} (8)

is a measurable function of ω. Let ξ be a birandom vari-
able defined on the probability space (Ω,A, Pr). Then its
expected value E[ξ] is defined by

∫ ∞

0

Pr {ω ∈ Ω|E[ξ(ω)] ≥ r}dr−
∫ 0

−∞
Pr {ω ∈ Ω|E[ξ(ω)] ≤ r}dr.

Let � = (ξ1, ξ2, · · · , ξn) be a birandom vector on the prob-
ability space (Ω,A, Pr), and fj : <n → < be continuous
functions, j = 1, 2, · · · , m. Then the primitive chance of
birandom event characterized by fj(�) ≤ 0, j = 1, 2, · · · , m
is a function from [0, 1] to [0, 1], defined as

Ch {fj(�) ≤ 0, j = 1, 2, · · · , m} (α)

= sup

{
β

∣∣ Pr

{
! ∈ Ω

∣∣ Pr

{
fj(�(!)) ≤ 0

j = 1, 2, · · · , m
}
≥ β

}
≥ α

}
.

A bifuzzy variable is defined by Liu [53] as a function
from a possibility space to a collection of fuzzy variables.
Let ξ be a bifuzzy variable defined on the possibility
space (Θ,P(Θ), Pos). The expected value E[ξ] is defined
by Liu [53] as

∫ ∞

0

Cr{θ ∈ Θ|E[ξ(θ)] ≥ r}dr −
∫ 0

−∞
Cr{θ ∈ Θ|E[ξ(θ)] ≤ r}dr.

Let � = (ξ1, ξ2, · · · , ξn) be a bifuzzy vector on the possi-
bility space (Θ,P(Θ), Pos), and fj : <n → < be continuous
functions, j = 1, 2, · · · , m. Then the primitive chance of
bifuzzy event characterized by fj(�) ≤ 0, j = 1, 2, · · · , m is
a function from [0, 1] to [0, 1], defined by Liu [53] as

Ch {fj(�) ≤ 0, j = 1, 2, · · · , m} (α)

= sup

{
β

∣∣ Pos

{
� ∈ Θ

∣∣ Pos

{
fj(�(�)) ≤ 0

j = 1, 2, · · · , m
}
≥ β

}
≥ α

}
.

A birough variable is defined by Liu [56] as a function
ξ from a rough space (Λ, ∆, A, π) to a collection of rough
variables such that for any Borel set B of <,

ξ∗(B)(λ) = Tr {ξ(λ) ∈ B} (9)

is a measurable function of λ. Let ξ be a birough variable
on the rough space (Λ, ∆,A, π). Then its expected value
E[ξ] is defined by

∫ ∞

0

Tr {λ ∈ Λ|E[ξ(λ)] ≥ r}dr−
∫ 0

−∞
Tr {λ ∈ Λ|E[ξ(λ)] ≤ r}dr.

Let � = (ξ1, ξ2, · · · , ξn) be a birough vector on the rough
space (Λ, ∆,A, π), and fj : <n → < be continuous func-
tions, j = 1, 2, · · · , m. Then the primitive chance of
birough event characterized by fj(�) ≤ 0, j = 1, 2, · · · , m
is a function from [0, 1] to [0, 1], defined as

Ch {fj(�) ≤ 0, j = 1, 2, · · · , m} (α)

= sup

{
β

∣∣ Tr

{
� ∈ Λ

∣∣ Tr

{
fj(�(�)) ≤ 0

j = 1, 2, · · · , m
}
≥ β

}
≥ α

}
.

A trirandom variable is a function ξ from a probability
space (Ω,A, Pr) to a collection of birandom variables such
that for any Borel set B of <,

ξ∗(B)(ω) = Ch{ξ(ω) ∈ B} (10)

is a measurable function of ω.
A trifuzzy variable is a function from a possibility

space to a collection of bifuzzy variables.
A trirough variable is a function ξ from a rough space

(Λ, ∆, A, π) to a collection of birough variables such that
for any Borel set B of <,

ξ∗(B)(λ) = Ch{ξ(λ) ∈ B} (11)

is a measurable function of λ.
We may also define other three-fold uncertainty. For

example, a fuzzy random rough variable is a function
from a rough space to a collection of fuzzy random vari-
ables such that for any Borel set B of <, ξ∗(B)(λ) =
Ch{ξ(λ) ∈ B} is a measurable function of λ.

III. Ranking Uncertain Variables

Let ξ and η be two uncertain variables. Different from
the situation of real numbers, there does not exist a nat-
ural ordership in an uncertain world. Thus an important
problem appearing in uncertain systems is how to rank
uncertain variables. The following ranking methods are
suggested.
(i) We say ξ > η if and only if E[ξ] > E[η], where E is
the expected value operator of uncertain variables. This
criterion leads to expected value models.
(ii) We say ξ > η if and only if, for some predetermined
confidence level α ∈ (0, 1], we have ξsup(α) > ηsup(α),
where ξsup(α) and ηsup(α) are the α-optimistic values of
ξ and η, respectively. This criterion leads to maximax
chance-constrained programming.
(iii) We say ξ > η if and only if, for some predetermined
confidence level α ∈ (0, 1], we have ξinf(α) > ηinf(α), where
ξinf(α) and ηinf(α) are the α-pessimistic values of ξ and
η, respectively. This criterion leads to minimax chance-
constrained programming.
(iv) We say ξ > η if and only if Ch {ξ ≥ r} > Ch {η ≥ r}
for some predetermined level r. This criterion leads to
dependent-chance programming.

IV. Expected Value Models

The first type of uncertain programming is the ex-
pected value model (EVM) in which the underlying phi-
losophy is based on selecting the decisions with maxi-
mum expected value of return.

We have stochastic, fuzzy, rough, fuzzy random, ran-
dom fuzzy, fuzzy rough, rough fuzzy, random rough,



rough random, birandom, bifuzzy, and birough EVM.
The general form of EVM is formulated as follows,




max E[f(x, �)]
subject to:

E[gj(x, �)] ≤ 0, j = 1, 2, · · · , p
(12)

where x is a decision vector, � is an uncertain vector,
f(x, �) is the return function, gj(x, �) are uncertain con-
straint functions for j = 1, 2, · · · , p, and E denotes the
expected value operator.

The expected value multiobjective programming (EV-
MOP) model has the following form,




max
[
E[f1(x, �)], E[f2(x, �)], · · · , E[fm(x, �)]

]
subject to:

E[gj(x, �)] ≤ 0, j = 1, 2, · · · , p
(13)

where fi(x, �) are return functions for i = 1, 2, · · · , m.
We can also formulate an uncertain decision system

as an expected value goal programming (EVGP) model
according to the priority structure and target levels set
by the decision-maker,




min
l∑

j=1

Pj

m∑
i=1

(uijd+
i + vijd−i )

subject to:

E[fi(x, �)] + d−i − d+
i = bi, i = 1, 2, · · · , m

E[gj(x, �)] ≤ 0, j = 1, 2, · · · , p
d+

i , d−i ≥ 0, i = 1, 2, · · · , m

(14)

where Pj is the preemptive priority factor which ex-
presses the relative importance of various goals, Pj À
Pj+1, for all j, uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned,
vij is the weighting factor corresponding to negative de-

viation for goal i with priority j assigned, d+
i is the pos-

itive deviation from the target of goal i, d−i is the nega-
tive deviation from the target of goal i, fi is a function in
goal constraints, bi is the target value according to goal
i, l is the number of priorities, m is the number of goal
constraints, and p is the number of real constraints.

V. Maximax Chance-Constrained Programming

In this section, we provide a spectrum of maxi-
max chance-constrained programming (CCP) models in
which the underlying philosophy is based on selecting
the alternative that provides the best optimistic return
with a given confidence level. In order to do so, we may
measure the uncertain return by its optimistic value.

We have stochastic, fuzzy, rough, fuzzy random, ran-
dom fuzzy, fuzzy rough, rough fuzzy, random rough,
rough random, birandom, bifuzzy, and birough CCP. A
single-objective maximax CCP model may be written as
follows,




max f

subject to:

Ch
{

f(x, �) ≥ f
}
≥ β

Ch {gj(x, �) ≤ 0, j = 1, 2, · · · , p} ≥ α

(15)

where α and β are predetermined confidence levels, and
max f will be the β-optimistic return.

Maximax chance-constrained multiobjective program-
ming (CCMOP) may be written as follows,





max
[
f1, f2, · · · , fm

]
subject to:

Ch
{

fi(x, �) ≥ f i

}
≥ βi, i = 1, 2, · · · , m

Ch {gj(x, �) ≤ 0} ≥ αj , j = 1, 2, · · · , p.

(16)

We can also formulate an uncertain decision sys-
tem as a minimin chance-constrained goal programming
(CCGP) according to the priority structure and target
levels set by the decision-maker:





min
l∑

j=1

Pj

m∑
i=1

(uijd+
i + vijd−i )

subject to:

Ch
{

fi(x, �)− bi ≤ d+
i

}
≥ β+

i , i = 1, 2, · · · , m
Ch

{
bi − fi(x, �) ≤ d−i

}
≥ β−i , i = 1, 2, · · · , m

Ch {gj(x, �) ≤ 0} ≥ αj , j = 1, 2, · · · , p
d+

i , d−i ≥ 0, i = 1, 2, · · · , m
(17)

where Pj is the preemptive priority factor which ex-
presses the relative importance of various goals, Pj À
Pj+1, for all j, uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned,
vij is the weighting factor corresponding to negative de-

viation for goal i with priority j assigned, d+
i is the β+

i -

optimistic positive deviation from the target of goal i, d−i
is the β−i -optimistic negative deviation from the target
of goal i, fi is a function in goal constraints, gj is a func-
tion in real constraints, bi is the target value according
to goal i, l is the number of priorities, m is the number of
goal constraints, and p is the number of real constraints.

VI. Minimax Chance-Constrained Programming

Murphy’s law states that “if anything can go wrong,
it will”. If you believe it, you may select the decision
with the best of these worst returns. In order to do so,
we may measure the uncertain return by its pessimistic
value.

As opposed to optimistic models, we have a spectrum
of minimax CCP models in which the underlying phi-
losophy is based on selecting the alternative with the
best pessimistic return with a given confidence level. A
single-objective minimax CCP model may be written as
follows,





max
x

min
f

f

subject to:

Ch
{

f(x, �) ≤ f
}
≥ β

Ch {gj(x, �) ≤ 0, j = 1, 2, · · · , p} ≥ α

(18)

where min f is the β-pessimistic return.
When there are multiple objectives, we may employ

the minimax CCMOP model,





max
x

[
min
f1

f1, min
f2

f2, · · · , min
fm

fm

]

subject to:

Ch
{

fi(x, �) ≤ f i

}
≥ βi, i = 1, 2, · · · , m

Ch {gj(x, �) ≤ 0} ≥ αj , j = 1, 2, · · · , p.

(19)

According to the priority structure and target levels,
the minimax CCGP model is written as follows,





min
x

l∑
j=1

Pj

m∑
i=1

[
uij

(
max
d+

i

d+
i ∨ 0

)
+ vij

(
max
d−

i

d−i ∨ 0

)]

subject to:

Ch
{

fi(x, �)− bi ≥ d+
i

}
≥ β+

i , i = 1, 2, · · · , m
Ch

{
bi − fi(x, �) ≥ d−i

}
≥ β−i , i = 1, 2, · · · , m

Ch {gj(x, �) ≤ 0} ≥ αj , j = 1, 2, · · · , p



where d+
i ∨0 is the β+

i -pessimistic positive deviation from

the target of goal i, and d−i ∨ 0 is the β−i -pessimistic neg-
ative deviation from the target of goal i.

VII. Dependent-Chance Programming

In order to model uncertain decision problems, we
may employ dependent-chance programming (DCP) in
which the underlying philosophy is based on selecting
the decisions with maximum chance to meet the events.
We thus have stochastic, fuzzy, rough, fuzzy random,
random fuzzy, fuzzy rough, rough fuzzy, random rough,
rough random, birandom, bifuzzy, and birough DCP.

A typical DCP in an uncertain environment is given
as follows:

{
maxCh {hk(x, �) ≤ 0, k = 1, 2, · · · , q}
subject to:

gj(x, �) ≤ 0, j = 1, 2, · · · , p
(20)

where x is a decision vector, � is an uncertain vec-
tor, then event is characterized by hk(x, �) ≤ 0, k =
1, 2, · · · , q, and the uncertain environment is constrained
as gj(x, �) ≤ 0, j = 1, 2, · · · , p.

Since a complex decision system usually undertakes
multiple tasks, there undoubtedly exist multiple poten-
tial objectives in the decision process. A dependent-
chance multiobjective programming (DCMOP) in an un-
certain environment has the following form,





max




Ch {h1k(x, �) ≤ 0, k = 1, 2, · · · , q1}
Ch {h2k(x, �) ≤ 0, k = 1, 2, · · · , q2}
· · ·

Ch {hmk(x, �) ≤ 0, k = 1, 2, · · · , qm}




subject to:

gj(x, �) ≤ 0, j = 1, 2, · · · , p.

(21)

We can also formulate an uncertain decision system as
a dependent-chance goal programming (DCGP) accord-
ing to the priority structure and target levels,





min
l∑

j=1

Pj

m∑
i=1

(uijd+
i + vijd−i )

subject to:

Ch

{
hik(x, �) ≤ 0

k = 1, 2, · · · , qi

}
+ d−i − d+

i = bi, i = 1, 2, · · · , m

gj(x, �) ≤ 0, j = 1, 2, · · · , p
d+

i , d−i ≥ 0, i = 1, 2, · · · , m

where Pj is the preemptive priority factor which ex-
presses the relative importance of various goals, Pj À
Pj+1, for all j, uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned,
vij is the weighting factor corresponding to negative de-

viation for goal i with priority j assigned, d+
i is the posi-

tive deviation from the target of goal i, d−i is the negative
deviation from the target of goal i, bi is the target value
according to goal i, l is the number of priorities, and m
is the number of goal constraints.

VIII. Uncertain Dynamic Programming

Let us consider an N-stage decision system in which
â = (a1,a2, · · · ,aN ) represents the state vector, x̂ =
(x1,x2, · · · ,xN ) the decision vector, (�1, �2, · · · , �N ) the un-
certain vector. We also assume that the state transition
function is

ai+1 = T (ai,xi, �i), i = 1, 2, · · · , N − 1. (22)

Expected Value Dynamic Programming

In order to maximize the discount expected return
over the horizon, we may use the following expected
value dynamic programming,





fN (a) = max
E[g(a,x,�N )]≤0

E[rN (a,x, �N )]

fn(a) = max
E[g(a,x,�n)]≤0

E[rn(a,x, �n) + θfn+1(T (a,x, �n)]

n ≤ N − 1

where ri are the return functions at the ith stages,
i = 1, 2, · · · , N , respectively, θ is a discount rate, 0 ≤ θ ≤ 1,
and E denotes the expected value operator. This type of
uncertain (especially stochastic) dynamic programming
has been applied to a wide variety of problems, for ex-
ample, inventory systems.

Chance-Constrained Dynamic Programming

In order to maximize the discount optimistic return
over the horizon, we may use the following chance-
constrained dynamic programming,





fN (a) = max
Ch{g(a,x,�N )≤0}≥α

rN (a,x, �N )

fn(a) = max
Ch{g(a,x,�n)≤0}≥α

{rn(a,x, �n) + θfn+1(T (a,x, �n)}

n ≤ N − 1

where the functions ri are defined by

ri(a,x, �i) = sup
r

{
r
∣∣ Ch{ri(a,x, �i) ≥ r} ≥ β

}
(23)

for i = 1, 2, · · · , N . If we want to maximize the discount
pessimistic return over the horizon, then we must define
the functions ri as

ri(a,x, �i) = inf
r

{
r
∣∣ Ch{ri(a,x, �i) ≤ r} ≥ β

}
(24)

for i = 1, 2, · · · , N .

Dependent-Chance Dynamic Programming

In order to maximize the discount chance over the
horizon, we may employ the following dependent-chance
dynamic programming,





fN (a) = max
g(a,x,�N )≤0

Ch{hN (a,x, �N ) ≤ 0}

fn(a) = max
g(a,x,�n)≤0

{Ch{hn(a,x, �n) ≤ 0}+ θfn+1(T (a,x, �n)}

n ≤ N − 1

where hi(a,x, �i) ≤ 0 are the events, and g(a,x, �i) ≤ 0
are the uncertain environmrnts at the ith stages, i =
1, 2, · · · , N , respectively.

IX. Uncertain Multilevel Programming

Assume that in a decentralized two-level decision sys-
tem there is one leader and m followers. Let x and yi
be the control vectors of the leader and the ith follow-
ers, i = 1, 2, · · · , m, respectively. We also assume that the
objective functions of the leader and ith followers are
F (x,y1, · · · ,ym, �) and fi(x,y1, · · · ,ym, �), i = 1, 2, · · · , m,
respectively, where � is an uncertain vector.

Expected Value Multilevel Programming

Let the feasible set of control vector x of the leader
be defined by the expected constraint

E[G(x, �)] ≤ 0 (25)



where G is a vector-valued function and 0 is a vector with
zero components. Then for each decision x chosen by
the leader, the feasibility of control array (y1,y2, · · · ,ym)
of followers should be dependent on x, and generally
represented by the expected constraint,

E[g(x,y1,y2, · · · ,ym, �)] ≤ 0 (26)

where g is a vector-valued function.
Assume that the leader first chooses his control vec-

tor x, and the followers determine their control array
(y1,y2, · · · ,ym) after that. In order to maximize the ex-
pected return of the leader, we have the following ex-
pected value bilevel programming,





max
x

E[F (x,y1,y2, · · · ,ym, �)]

subject to:

E[G(x, �)] ≤ 0

where each yi(i = 1, 2, · · · , m) solves



max
yi

E[fi(x,y1,y2, · · · ,ym, �)]

subject to:

E[g(x,y1,y2, · · · ,ym, �)] ≤ 0.

(27)

A Nash equilibrium of followers is the feasible array
(y∗1,y∗2, · · · ,y∗m) with respect to x if

E[fi(x,y∗1, · · · ,y∗i−1,yi,y∗i+1, · · · ,y∗m, �)]
≤ E[fi(x,y∗1, · · · ,y∗i−1,y∗i ,y∗i+1, · · · ,y∗m, �)]

(28)

for any feasible (y∗1, · · · ,y∗i−1,yi,y∗i+1, · · · ,y∗m) and i =

1, 2, · · · , m. Let x∗ be a feasible control vector of
the leader and (y∗1,y∗2, · · · ,y∗m) be a Nash equilibrium
of followers with respect to x∗. We call the array
(x∗,y∗1,y∗2, · · · ,y∗m) a Stackelberg-Nash equilibrium to the ex-
pected value bilevel programming (27) if and only if,

E[F (x,y1,y2, · · · ,ym, �)] ≤ E[F (x∗,y∗1,y∗2, · · · ,y∗m, �)] (29)

for any feasible x and the Nash equilibrium (y1,y2, · · · ,ym)
with respect to x.

Chance-Constrained Multilevel Programming

In order to maximize the optimistic return subject to
the chance constraint, we may use the following chance-
constrained bilevel programming,





max
x

F

subject to:

Ch{F (x,y1,y2, · · · ,ym, �) ≥ F} ≥ β

Ch{G(x, �) ≤ 0} ≥ α

where each yi(i = 1, 2, · · · , m) solves



max
yi

f i

subject to:

Ch{fi(x,y1,y2, · · · ,ym, �) ≥ f i} ≥ βi

Ch{g(x,y1,y2, · · · ,ym, �) ≤ 0} ≥ αi

(30)

where α, β, αi, βi, i = 1, 2, · · · , m are predetermined confi-
dence levels.

A Nash equilibrium of followers is the feasible array
(y∗1,y∗2, · · · ,y∗m) with respect to x if

f i(x,y∗1, · · · ,y∗i−1,yi,y∗i+1, · · · ,y∗m)

≤ f i(x,y∗1, · · · ,y∗i−1,y∗i ,y∗i+1, · · · ,y∗m)
(31)

for any feasible array (y∗1, · · · ,y∗i−1,yi,y∗i+1, · · · ,y∗m) and

i = 1, 2, · · · , m. Let x∗ be a feasible control vector of the

leader and (y∗1,y∗2, · · · ,y∗m) be a Nash equilibrium of fol-
lowers with respect to x∗. The array (x∗,y∗1,y∗2, · · · ,y∗m)
is called a Stackelberg-Nash equilibrium to the chance-
constrained bilevel programming (30) if and only if,

F (x,y1,y2, · · · ,ym) ≤ F (x∗,y∗1,y∗2, · · · ,y∗m) (32)

for any feasible control vector x and the Nash equilib-
rium (y1,y2, · · · ,ym) with respect to x.

In order to maximize the pessimistic return, we have
the following minimax chance-constrained bilevel pro-
gramming,





max
x

min
F

F

subject to:

Ch{F (x,y1,y2, · · · ,ym, �) ≤ F} ≥ β

Ch{G(x, �) ≤ 0} ≥ α

where each yi(i = 1, 2, · · · , m) solves



max
yi

min
fi

f i

subject to:

Ch{fi(x,y1,y2, · · · ,ym, �) ≤ f i} ≥ βi

Ch{g(x,y1,y2, · · · ,ym, �) ≤ 0} ≥ αi.

(33)

Dependent-Chance Multilevel Programming

Let H(x,y1,y2, · · · ,ym, �) ≤ 0 and hi(x,y1,y2, · · · ,ym, �) ≤
0 be the events of the leader and ith followers, i =
1, 2, · · · , m, respectively. In order to maximize the chance
function of the leader, we have the following dependent-
chance bilevel programming,





max
x

Ch{H(x,y1,y2, · · · ,ym, �) ≤ 0}
subject to:

G(x, �) ≤ 0

where each yi(i = 1, 2, · · · , m) solves



max
yi

Ch{hi(x,y1,y2, · · · ,ym, �) ≤ 0}
subject to:

g(x,y1,y2, · · · ,ym, �) ≤ 0.

(34)

The feasible array (y∗1,y∗2, · · · ,y∗m) is called a Nash equi-
librium of followers with respect to x if

Ch{hi(x,y∗1, · · · ,y∗i−1,yi,y∗i+1, · · · ,y∗m, �) ≤ 0}
≤ Ch{hi(x,y∗1, · · · ,y∗i−1,y∗i ,y∗i+1, · · · ,y∗m, �) ≤ 0}

(35)
for any feasible array (y∗1, · · · ,y∗i−1,yi,y∗i+1, · · · ,y∗m) and

i = 1, 2, · · · , m. Let x∗ be a feasible control vector
of the leader and (y∗1,y∗2, · · · ,y∗m) be a Nash equilib-
rium of followers with respect to x∗. We call the ar-
ray (x∗,y∗1,y∗2, · · · ,y∗m) a Stackelberg-Nash equilibrium to the
dependent-chance bilevel programming (34) if and only
if,

Ch{H(x,y1,y2, · · · ,ym, �) ≤ 0}
≤ Ch{H(x∗,y∗1,y∗2, · · · ,y∗m, �) ≤ 0}

for any feasible control vector x and the Nash equilib-
rium (y1,y2, · · · ,ym) with respect to x.

X. Hybrid Intelligent Algorithms

This section will introduce the general principle of de-
signing hybrid intelligent algorithms. Essentially, there
are three types of uncertain function arising in the area
of fuzzy programming:

U1 : x→ E[f(x, �)],
U2 : x→ Pos/Cr/Nec{fj(x, �) ≤ 0, j = 1, 2, · · · , p},
U3 : x→ max

{
f

∣∣ Pos/Cr/Nec
{

f(x, �) ≥ f
}
≥ α

}
.



We may compute the uncertain functions by simulations.
However, fuzzy simulation is obviously a time-consuming
process. In order to speed up the process, we may gen-
erate input-output data for each type of uncertain func-
tion. Then we train a feedforward NN to approximate
the uncertain function using the generated training data.
For solving general fuzzy programming models, we may
embed the trained NN into GA, thus producing a hybrid
intelligent algorithm. The general procedure of hybrid
intelligent algorithm is listed as follows,

Step 1: Generate training input-output data for uncer-
tain functions by fuzzy simulations.
Step 2: Train a neural network to approximate the uncer-
tain functions according to the generated training data.
Step 3: Initialize pop size chromosomes whose feasibility
may be checked by the trained neural network.
Step 4: Update the chromosomes by crossover and muta-
tion operations in which the feasibility of offspring may
be checked by the trained neural networks.
Step 5: Calculate the objective values for all chromo-
somes by the trained neural networks.
Step 6: Compute the fitness of each chromosome accord-
ing to the objective values.
Step 7: Select the chromosomes by spinning the roulette
wheel.
Step 8: Repeat the fourth to seventh steps for a given
number of cycles.
Step 9: Report the best chromosome as the optimal so-
lution.

Acknowledgments

This work was supported by National Natural Sci-
ence Foundation of China Grant No.69804006, and Sino-
French Joint Laboratory for Research in Computer Sci-
ence, Control and Applied Mathematics(LIAMA).

References

[1] Bellman, R.E., and Zadeh, L.A., Decision making in a fuzzy
environment, Management Science, Vol. 17, 141–164, 1970.

[2] Bouchon-Meunier, B., Kreinovich, V., Lokshin, A., and
Nguyen, H.T., On the formulation of optimization under
elastic constraints (with control in mind), Fuzzy Sets and
Systems, Vol. 81, 5–29, 1996.

[3] Buckley, J.J., Possibility and necessity in optimization,
Fuzzy Sets and Systems, Vol. 25, 1–13, 1988.

[4] Buckley, J.J., Stochastic versus possibilistic programming,
Fuzzy Sets and Systems, Vol. 34, 173–177, 1990.

[5] Buckley, J.J., Multiobjective possibilistic linear program-
ming, Fuzzy Sets and Systems, Vol. 35, 23–28, 1990.

[6] Buckley, J.J., and Hayashi, Y., Fuzzy genetic algorithm
and applications, Fuzzy Sets and Systems, Vol. 61, 129–136,
1994.

[7] Buckley, J.J., and Feuring, T., Evolutionary algorithm so-
lution to fuzzy problems: Fuzzy linear programming, Fuzzy
Sets and Systems, Vol. 109, No. 1, 35–53, 2000.

[8] Charnes, A. and Cooper, W.W., Chance-constrained pro-
gramming, Management Science, Vol. 6, No. 1, 73–79, 1959.

[9] Charnes, A. and Cooper, W.W., Management Models and
Industrial Applications of Linear Programming, Wiley, New
York, 1961.

[10] Dubois, D., and Prade, H., Fuzzy Sets and Systems, Theory
and Applications, Academic Press, New York, 1980.

[11] Dubois, D., and Prade, H., Fuzzy cardinality and the mod-
eling of imprecise quantification, Fuzzy Sets and Systems,
Vol. 16, 199–230, 1985.

[12] Dubois, D., and Prade, H., Possibility Theory, Plenum, New
York, 1988.

[13] Dubois, D., and Prade, H., Rough fuzzy sets and fuzzy
rough sets, International Journal of General Systems, Vol.
17, 191–200, 1990.

[14] Gao, J., and Liu, B., New primitive chance measures of fuzzy
random event, International Journal of Fuzzy Systems, Vol.
3, No. 4, 527-531, 2001.

[15] Gen, M., Liu, B., and Ida, K., Evolution program for deter-
ministic and stochastic optimizations, European Journal of
Operational Research, Vol. 94, No. 3, 618–625, 1996.

[16] Inuiguchi, M., Ichihashi, H., and Kume Y., Relationships
between modality constrained programming problems and
various fuzzy mathematical programming problems, Fuzzy
Sets and Systems. Vol. 49, 243–259, 1992.

[17] Inuiguchi, M., Ichihashi, H., and Kume, Y., Modality con-
strained programming problems: An unified approach to
fuzzy mathematical programming problems in the setting
of possibility theory, Information Sciences, Vol. 67, 93–126,
1993.

[18] Inuiguchi, M., and Ramı́k, J., Possibilistic linear program-
ming: A brief review of fuzzy mathematical programming
and a comparison with stochastic programming in portfolio
selection problem, Fuzzy Sets and Systems, Vol. 111, No. 1,
3–28, 2000.

[19] Iwamura, K. and Liu, B., A genetic algorithm for chance
constrained programming, Journal of Information & Opti-
mization Sciences, Vol. 17, No. 2, 40–47, 1996.

[20] Iwamura, K. and Liu, B., Chance constrained integer pro-
gramming models for capital budgeting in fuzzy environ-
ments, Journal of the Operational Research Society, Vol.
49, No. 8, 854–860, 1998.

[21] Iwamura, K. and Liu, B., Stochastic operation models for
open inventory networks, Journal of Information & Opti-
mization Sciences, Vol.20, No. 3, 347-363, 1999.

[22] Iwamura, K. and Liu, B., Dependent-chance integer pro-
gramming applied to capital budgeting, Journal of the Op-
erations Research Society of Japan, Vol. 42, No. 2, 117–127,
1999.

[23] Kall, P. and Wallace, S.W., Stochastic Programming, Wiley,
Chichester, 1994.

[24] Kaufman, A. and Gupta, M.M., Introduction to Fuzzy
Arithmetic: Theory and Applications, Van Nostrand Rein-
hold, New York, 1985.

[25] Kaufman, A. and Gupta, M.M., Fuzzy Mathematical Models
in Engineering and Management Science, 2nd ed., North-
Holland, Amsterdam, 1991.

[26] Keown, A.J. and Martin, J.D., A chance constrained goal
programming model for working capital management, En-
gng Econ., Vol. 22, 153–174, 1977.

[27] Keown, A.J., A chance-constrained goal programming
model for bank liquidity management, Decision Sciences,
Vol. 9, 93–106, 1978.

[28] Keown, A.J. and Taylor, B.W., A chance-constrained integer
goal programming model for capital budgeting in the pro-
duction area, Journal of the Operational Research Society,
Vol. 31, No. 7, 579–589, 1980.

[29] Klir, G.J. and Folger, T.A., Fuzzy Sets, Uncertainty, and
Information, Prentice-Hall, Englewood Cliffs, NJ, 1980.

[30] Kruse, R., and Meyer, K.D., Statistics with Vague Data, D.
Reidel Publishing Company, Dordrecht, 1987.

[31] Kwakernaak, H., Fuzzy random variables I, Information Sci-
ences, Vol. 15, 1–29, 1978.

[32] Kwakernaak H., Fuzzy random variables II, Information
Sciences, Vol. 17, 153–178, 1979.

[33] Lai, Y.-J. and Hwang, C.-L., A new approach to some pos-
sibilistic linear programming problems, Fuzzy Sets and Sys-
tems, Vol. 49, 121–133, 1992.

[34] Lai, Y.-J. and Hwang, C.-L., Fuzzy Multiple Objective De-
cision Making: Methods and Applications, Springer-Verlag,
New York, 1994.

[35] Lee, E.S., and Li, R.J., Fuzzy multiple objective program-
ming and compromise programming with Pareto optimum,
Fuzzy Sets and Systems, Vol. 53, 275–288, 1993.

[36] Lee, E.S., Fuzzy multiple level programming, Applied Math-
ematics and Computation, Vol. 120, 79–90, 2001.

[37] Liu, B. and Ku, C., Dependent-chance goal programming
and an application, Journal of Systems Engineering & Elec-
tronics, Vol. 4, No. 2, 40–47, 1993.

[38] Liu, B., Dependent-chance goal programming and its ge-
netic algorithm based approach, Mathematical and Com-
puter Modelling, Vol. 24, No. 7, 43–52, 1996.

[39] Liu, B., Dependent-chance programming: A class of stochas-



tic programming, Computers & Mathematics with Applica-
tions, Vol. 34, No. 12, 89–104, 1997.

[40] Liu, B., and Iwamura, K., Modelling stochastic decision sys-
tems using dependent-chance programming, European Jour-
nal of Operational Research, Vol. 101, No. 1, 193–203, 1997.

[41] Liu, B., and Iwamura, K., Chance constrained programming
with fuzzy parameters, Fuzzy Sets and Systems, Vol. 94, No.
2, 227–237, 1998.

[42] Liu, B., and Iwamura, K., A note on chance constrained pro-
gramming with fuzzy coefficients, Fuzzy Sets and Systems,
Vol. 100, Nos. 1–3, 229–233, 1998.

[43] Liu, B., Stackelberg-Nash equilibrium for multilevel pro-
gramming with multiple followers using genetic algorithms,
Computers & Mathematics with Applications, Vol. 36, No.
7, 79–89, 1998.

[44] Liu, B., Minimax chance constrained programming models
for fuzzy decision systems, Information Sciences, Vol. 112,
Nos. 1–4, 25–38, 1998.

[45] Liu, B., and Zhao, R., Stochastic Programming and Fuzzy
Programming, Tsinghua University Press, Beijing, 1998.

[46] Liu, B., Dependent-chance programming with fuzzy deci-
sions, IEEE Transactions on Fuzzy Systems, Vol. 7, No. 3,
354–360, 1999.

[47] Liu, B., and Esogbue, A.O., Decision Criteria and Optimal
Inventory Processes, Kluwer Academic Publishers, Boston,
1999.

[48] Liu, B., Uncertain Programming, Wiley, New York, 1999.
[49] Liu, B., Dependent-chance programming in fuzzy environ-

ments, Fuzzy Sets and Systems, Vol. 109, No. 1, 97–106,
2000.

[50] Liu, B., and Iwamura, K., Topological optimization models
for communication network with multiple reliability goals,
Computers & Mathematics with Applications, Vol. 39, 59–
69, 2000.

[51] Liu, B., Uncertain programming: A unifying optimization
theory in various uncertain environments, Applied Mathe-
matics and Computation, Vol. 120, Nos. 1–3, 227–234, 2001.

[52] Liu, B., and Iwamura, K., Fuzzy programming with fuzzy
decisions and fuzzy simulation-based genetic algorithm,
Fuzzy Sets and Systems, Vol. 122, No. 2, 253–262, 2001.

[53] Liu, B., Toward fuzzy optimization without mathematical
ambiguity, Fuzzy Optimization and Decision Making, Vol.
1, No. 1, 43-63, 2002.

[54] Liu, B., Fuzzy random chance-constrained programming,
IEEE Transactions on Fuzzy Systems, Vol. 9, No. 5, 713–
720, 2001.

[55] Liu, B., Fuzzy random dependent-chance programming,
IEEE Transactions on Fuzzy Systems, Vol. 9, No. 5, 721–
726, 2001.

[56] Liu, B., Theory and Practice of Uncertain Programming,
Physica-Verlag, Heidelberg, 2002.

[57] Liu, B., and Liu, Y.-K., Expected value of fuzzy variable and
fuzzy expected value models, IEEE Transactions on Fuzzy
Systems, Vol. 10, No. 4, 445-450, 2002.

[58] Liu, B., Random fuzzy dependent-chance programming and
its hybrid intelligent algorithm, Information Sciences, Vol.
141, No. 3-4, 259-271, 2002.

[59] Liu, Y.-K., and Liu, B., Fuzzy random variables: A scalar
expected value, Fuzzy Optimization and Decision Making,
to be published.

[60] Liu, Y.-K., and Liu, B., Expected value operator of ran-
dom fuzzy variable and random fuzzy expected value mod-
els, International Journal of Uncertainty, Fuzziness &
Knowledge-Based Systems, to be published.

[61] Liu, Y.-K., and Liu, B., Expected value models in fuzzy
random decision systems with a hybrid intelligent algorithm,
Technical Report, 2000.

[62] Luhandjula, M.K., Linear programming under randomness
and fuzziness, Fuzzy Sets and Systems, Vol. 10, 45–55, 1983.

[63] Luhandjula, M.K., On possibilistic linear programming,
Fuzzy Sets and Systems, Vol. 18, 15–30,1986.

[64] Luhandjula, M.K., Fuzzy optimization: An appraisal, Fuzzy
Sets and Systems, Vol. 30, 257–282, 1989.

[65] Luhandjula, M.K., Fuzziness and randomness in an opti-
mization framework, Fuzzy Sets and Systems, Vol. 77, 291–
297, 1996.

[66] Luhandjula M.K. and M.M. Gupta, On fuzzy stochastic op-
timization, Fuzzy Sets and Systems, Vol. 81, 47–55, 1996.

[67] Maleki, H.R., Tata, M., and Mashinchi, M., Linear program-
ming with fuzzy variables, Fuzzy Sets and Systems, Vol. 109,
No. 1, 21–33, 2000.

[68] Mareschal, B., Stochastic multicriteria decision making and
uncertainty, European Journal of Operational Research, Vol.
26, No. 1, 58–64, 1986.

[69] Nahmias, S., Fuzzy variables, Fuzzy Sets and Systems, Vol.
1, 97–110, 1978.

[70] Ostasiewicz, W., A new approach to fuzzy programming,
Fuzzy Sets and Systems, Vol. 7, 139–152, 1982.

[71] Pawlak, Z., Rough sets, International Journal of Informa-
tion and Computer Sciences, Vol. 11, No. 5, 341–356, 1982.

[72] Pawlak, Z., Rough sets and fuzzy sets, Fuzzy sets and Sys-
tems, Vol. 17, 99–102, 1985.

[73] Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning
about Data, Kluwer Academic Publishers, Dordrecht, 1991.

[74] Pawlak, Z., and Slowinski, R., Rough set approach to multi-
attribute decision analysis, European Journal of Operational
Research, Vol. 72, 443–459, 1994.

[75] Puri, M.L. and Ralescu, D., Fuzzy random variables, Jour-
nal of Mathematical Analysis and Applications, Vol. 114,
409–422, 1986.

[76] Ramı́k, J., Extension principle in fuzzy optimization, Fuzzy
Sets and Systems, Vol. 19, 29–35, 1986.

[77] Ramı́k, J., and Rommelfanger H., Fuzzy mathematical pro-
gramming based on some inequality relations, Fuzzy Sets
and Systems, Vol. 81, 77–88, 1996.

[78] Roubens, M., and Teghem Jr. J., Comparison of methodolo-
gies for fuzzy and stochastic multi-objective programming,
Fuzzy Sets and Systems, Vol. 42, 119–132, 1991.

[79] Saade, J.J., Maximization of a function over a fuzzy domain,
Fuzzy Sets and Systems, Vol. 62, 55–70, 1994.

[80] Sakawa, M., and Yano, H., Feasibility and Pareto optimal-
ity for multiobjective nonlinear programming problems with
fuzzy parameters, Fuzzy Sets and Systems, Vol. 43, 1–15,
1991.

[81] Slowinski, R. and Teghem, Jr. J., Fuzzy versus stochastic
approaches to multicriteria linear programming under un-
certainty, Naval Research Logistics, Vol. 35, 673–695, 1988.

[82] Slowinski, R., and Vanderpooten, D., A generalized defi-
nition of rough approximations based on similarity, IEEE
Transactions on Knowledge and Data Engineering, Vol. 12,
No. 2, 331–336, 2000.

[83] Tanaka, H., Guo, P., and Zimmermann, H.-J., Possibility
distribution of fuzzy decision variables obtained from possi-
bilistic linear programming problems, Fuzzy Sets and Sys-
tems, Vol. 113, 323–332, 2000.

[84] Wang G. and Z. Qiao, Linear programming with fuzzy ran-
dom variable coefficients, Fuzzy Sets and Systems, Vol. 57,
295–311, 1993.

[85] Yager, R.R., Mathematical programming with fuzzy con-
straints and a preference on the objective, Kybernetes, Vol.
9, 285–291, 1979.

[86] Yager, R.R., Generalized probabilities of fuzzy events from
fuzzy belief structures, Information Sciences, Vol. 28, 45–62,
1982.

[87] Yager, R.R., On ordered weighted averaging aggregation op-
erators in multicriteria decision making, IEEE Transactions
on Systems, Man and Cybernetics, Vol. 18, 183–190, 1988.

[88] Yager, R.R., On the specificity of a possibility distribution,
Fuzzy Sets and Systems, Vol. 50, 279–292, 1992.

[89] Yager, R.R., Decision making with fuzzy probability assess-
ments, IEEE Transactions on Fuzzy Systems, Vol. 7, 462–
466, 1999.

[90] Yazenin, A.V., Fuzzy and stochastic programming, Fuzzy
Sets and Systems, Vol. 22, 171–180, 1987.

[91] Yazenin, A.V., On the problem of possibilistic optimization,
Fuzzy Sets and Systems, Vol. 81, 133–140, 1996.

[92] Zadeh, L.A., Fuzzy sets, Information and Control, Vol. 8,
338–353, 1965.

[93] Zadeh, L.A., Outline of a new approach to the analysis of
complex systems and decision processes, IEEE Transactions
on Systems, Man and Cybernetics, Vol. 3, 28–44, 1973.



[94] Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility,
Fuzzy Sets and Systems, Vol. 1, 3–28, 1978.

[95] Zhao, R., and Liu, B., Stochastic programming models for
general redundancy optimization problems, IEEE Transac-
tions on Reliability, to be published.

[96] Zimmermann, H.-J., Fuzzy mathematical programming,
Computers and Operations Research, Vol. 10, 291–298,
1983.

[97] Zimmermann, H.-J., Applications of fuzzy set theory to
mathematical programming, Information Sciences, Vol. 36,
29–58, 1985.

[98] Zimmermann, H.-J., Fuzzy Set Theory and its Applications,
Kluwer Academic Publishers, Boston, 1985.




