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Abstract 

In this paper we will examine some implications of 
online data for a classical operations management model, 
vis. the Economic Order Quantity model. Customer 
waiting behavior on individual orders (which occur 
during stockouts) forms the basis for evaluating the 
potential backorders. The potential attraction of reducing 
inventory holding costs must be balanced with the loss 
due to lost sales. We clearly delineate the conditions under 
which it is profitable to stock out every ordering cycle, 
and the conditions under which the traditional economic 
order quantity model still holds. In order to allow practical 
application of the model, we develop a number of 
different approaches to the problem of estimating the 
backorder function from available on-line transaction 
data. 
 
1. Introduction  

The emergence of web based online retailing has 
changed the manner in which customer behavior can be 
tracked and profiled. A recent article profiling Yahoo 
presents the potential and pitfalls in utilizing this data for 
new business models [10]. New tools are available that 
allow one to target promotions and product offerings to 
customers predisposed to purchasing them as indicated by 
customers’ observed past behavior. 

The availability of extensive customer purchase 
behavior data is changing the way in which different 
functional areas can formulate optimal tactics and 
strategies. This has particular relevance for marketing. For 
instance; Active Buyers Guide helps visitors select 
models of various consumer electronic items (see 
http://www.activebuyersguide.com). They evaluate the 
customer's preferences for attributes by conducting a 
factor analysis using dynamically generated flash card 
comparisons. Similarly, in retailing, some sites track the 
online browsing behavior and have a history of items that 
a particular customer finds interesting. This data is used to 
suggest similar items for purchase. Amazon 
(http://www.amazon.com) is a popular retailer with 
extremely sophisticated customer management. “What 
Amazon.com has done is invent and implement a model 
for interacting with millions of customers, one at a time” 
(see [1]). “Customers love Amazon not because it offers 
the lowest prices--it doesn't--but because the experience 
has been crafted so carefully that most of us actually enjoy 

it” (see [6]). 
There are implications for inventory management as 

well. As an example, this data is also being used to suggest 
alternate items in case a particular item is out of stock, or 
to provide an updated estimate for the waiting time till 
new stock arrives. This allows the customer to make 
informed choices about substitution and/or backordering. 
This behavior is now visible to the retailer, and can form 
the basis for better business decisions. The challenge is 
not merely to suggest replacement items or provide 
waiting times, but to use operational policies and 
management strategies to better support this interaction 
between the firm and the customer. 

In this paper we will examine some implications of 
online data for a classical operations management model, 
vis. the Economic Order Quantity model. Customer 
waiting behavior on individual orders (which occur 
during stockouts) forms the basis for evaluating the 
potential backorders. The potential attraction of reducing 
inventory holding costs must be balanced with the loss 
due to lost sales. We clearly delineate the conditions under 
which it is profitable to stock out every ordering cycle, 
and the conditions under which the traditional economic 
order quantity model still holds. In order to allow practical 
application of the model, we develop a number of 
different approaches to the problem of estimating the 
backorder function from available on-line transaction 
data. 

 
2. Literature Survey 

There is a significant body of recent literature on online 
retailing. The increasing popularity of the web has led to 
an explosion of research related to retail substitution 
behavior (see [2] [3] [8] [14] [21]). These papers illustrate 
the effect of detailed customer behavior data on the 
Operations Management literature. 

The EOQ formula was initially derived in [11], and the 
related literature is voluminous, see e.g. [9] [23]. The 
EOQ model with backorders has been discussed by [9] as 
well. They consider a linear backorder function, and 
derive a policy based on a backorder cost per unit 
backordered per time unit. 

A number of authors have extended the EOQ model by 
considering backorders. Backorder models where only a 
fraction of the demand is backordered when a stockout 
occurs are examined in [15] [16] [20] [22]. Our model 
easily handles these kinds of mixtures between backorders 
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(pent-up demand) and lost sales. Our model does not have 
explicit costs of not satisfying demand from on-hand 
stock. Instead, some of the demand during the stockout 
period turns into lost sales, which reduces revenue for the 
retailer. 

Backorders have been the subject of extensive research 
in the context of stochastic models. An order point order 
quantity model with a mixture of backorders and lost sales 
is investigated in [18]. Lost sales will occur when 
backorders exceed a certain threshold level. General 
backorder costs in stochastic inventory models are 
discussed in [5]. 

The cost structure of backorders has been extended by 
some authors. Inventory policies when the backorder 
costs have fixed and proportional components are 
examined in [4]. Another approach to modeling the effect 
of stock-outs can be found in [17], where it is assumed 
that the demand rate is influenced by backorders. 
However, to the best of our knowledge, the approach to 
modeling the effect of stockouts presented in our model is 
new, as is the characterization of conditions under which 
periodic availability is an optimal policy. 

There is also extensive research on perishable 
inventories, when the stock at hand may decay, or become 
obsolete. One representative paper [13] integrates the 
stocking decision with backordering. While we do not 
have perishable inventories, we have “perishable” 
backorders, in the sense that backorders grow less than 
proportionately with the elapsed stockout time. 

Finally, in [12] a recent paper uses an exponential 
pent-up demand function in the context of stochastic lead 
times. Lee focuses on algorithms to obtain the optimal 
stockout period without deriving any structural results. 
This is the only paper we have found so far which 
examines a non-linear pent-up demand function. In 
contrast, our paper presents the structural results for any 
pent-up demand function, as well as the parametric 
conditions under which three different policies are 
optimal: the EOQ stocking policy, the periodic stocking 
policy and the no-inventory policy. 

Many EOQ inventory models focus on inventory as a 
cost, as the original work [11] did. The decision maker 
controls a cost center, and attempts to minimize costs 
while delivering a certain service level. Often, this leads to 
situations where the optimal decision is unprofitable, as 
already observed in [22]. In contrast, our objective is to 
maximize profits, which allows us to choose not to operate 
if it is not profitable.  

A different way to think of the periodic availability 
policies in this paper is as a bridge between classical 
“supply from inventory” policies (where a retailer 
attempts to fill demand from on-hand stock) and stockless 
retailing policies (where the retailer acts purely as an order 
taker who passes the demand on to his supplier). Indeed, 
both extremes are special cases of our general model. 

We use fractional programming to solve the discounted 
cash flow optimization. A good introduction to non-linear 
fractional programming can be found in [7]. Our 

algorithm is similar, but specifically crafted for our needs. 
 

3. The Inventory Model 
We make all the standard assumptions of the Economic 

Order Quantity (EOQ) model, but with some additional 
assumptions regarding what happens when the retailer 
runs out of stock (which is not allowed in the EOQ model). 
The retailer experiences a constant deterministic demand 
of D units of product per unit time for a given product. 
The retailer can place an order at any time for any quantity 
of product desired, and the delivery will be made after a 
constant lead time. There is a fixed order cost of F per 
order placed, a purchasing cost of c per unit purchased, 
non-financial inventory holding cost of h per unit kept in 
inventory per unit time, and since we will use continuous 
time discounting, a discount rate of r per time unit. The 
retailer sells items at a price of p per unit sold. The retailer 
seeks to maximize total discounted profit. 

Contrary to the standard EOQ assumptions, we assume 
that when the retailer runs out of stock, some of the 
demand is backordered and some of the demand is lost. In 
particular, if the retailer has been out of stock for t time 
units, the total “pent-up” or backordered demand equals 

( ).D t The function ( )D t  is assumed to satisfy the 
following properties: (0) 0=D , ( )D t  is concave and 
non-decreasing, and ( ) ( ) ( )− ≤ −D t D t t s D  for all t > s ≥ 
0. Of course if ( )D t  is differentiable, these conditions   
can be stated as 0 ( ) ,D t D′≤ ≤ and ( )′D t is 
non-increasing. It will be convenient to use a scaled 
version of the pent-up demand function, so we define 

( )k t   = ( ) / .D t D  This function will therefore satisfy the 
following assumptions: 

 
(0) 0,
( ) is non-decreasing and concave.

k
k t
=

 

Define the subdifferential ( )k t∂   of k at t as the set of all 
values x such that ( ) ( ) ( )k s k t x s t≤ + − for all 0s ≥ . In 
particular the assumptions imply that k is almost 
everywhere differentiable, and that the subdifferential 

k∂ always exists and is decreasing in the obvious sense, 
i.e., if ,t s< then ( ) ( )k t k s′ ′≥ for every ( ) ( )k t k t′ ∈ ∂  
and ( ) ( )k s k s′ ∈ ∂ . 

Using standard dynamic programming arguments, it is 
easy to see that a cyclic policy is optimal. For convenience, 
we will assume that the retailer starts with no stock, and 
with no backorders. The retailer must then decide, first, 
how long to allow backorders to build up before taking 
delivery (t), and second, how long (x) to keep the item in 
stock after that.  Either of these time periods can be zero: if 
t = 0, the classical EOQ situation results, if x = 0, the 
retailer follows a “stockless” policy, i.e., the retailer is 
basically just an order taker. 

Hence during a single cycle the following events occur. 
At time 0 (the start of the cycle), the retailer runs out of 
stock. Pent-up demand accumulates during the next t time 
units. At that moment, an order of Q units of product is 
received. The pent-up demand ( )D t  is satisfied as soon as 
the delivery of product is made at time t, so the resulting 



 

 

inventory is ( )−Q D t . Note that it doesn’t make sense to 
not satisfy all the pent-up demand at time t: the retailer 
could just order ( )−D t Q  more units and sell them 
immediately at time t. This would lead to a positive cash 
flow of ( )( ( ) )− −p c D t Q  at time t. If this pent-up 
demand is not satisfied at time t, some of it may turn into 
lost sales, and the net present value of the remainder is 
reduced because of discounting. 

During the interval (t, t + x), the inventory of ( )−Q D t  
is drawn down at a rate of D by the regular demand, and at 
time t + x the retailer runs out of stock again. Hence 
 ( )( ) / / ( )= − = −x Q D t D Q D k t   (1) 

or  ( )( )= +Q D x k t .  (2) 

Finally, to avoid pathological cases, we assume p > c ≥ 
0, F > 0, h > 0. 
 
4. The Optimal Inventory Policy 

We first derive an expression for the net present value 
associated with a policy ( , ).x t  We assume that at time 0 
the retailer runs out of stock. Then during the interval 
(0, )t there are no cash flows. At time t, the retailer 
purchases ( )( )+D x k t units of product at discounted cost  

( )( ( ) ).− + +rte cD x k t F  At the same time, the retailer sells 
( )Dk t  units with a discounted revenue of ( )−rte pDk t . 

During the interval ( , )+t t x  the retailer sells D units of 
product per time period, which leads to total discounted 
revenue of 

 (1 ).
+

− − −= −∫
t x

ry rt rxD
rt

pD e dy p e e  

During this time interval inventory decreases from Dx  to 
0, which means that the discounted holding cost over this 
period equals 

 1( ) ( ).−+
− − −+ − = +∫ rxt x

ry rt eD
r rt

hD t x y e dy h e x  

Define ( ),α= −D p c ( / )( / ),β = +D r p h r and 
( / )( / ).γ = +D r c h r  Then the discounted value of all 

cash flows during the first cycle can be expressed as 
 ( )( ) (1 )α γ β− −− − + −rt rxe k t F rx e . 

Finally the total discounted value of all cash flows for an 
infinite horizon is the single cycle value multiplied by 

( )1/(1 )r t xe− +− , which equals 

 ( ) (1 )( , ) .α β γπ
−

−

+ − − −=
−

rx

rt rx

k t e rx Fx t
e e

  (3) 

It is not hard to show that in maximizing (3) we can 
confine ourselves to the region 
 { }( , ) : 0, 0, ( , ) (0,0)x t x t x tΨ = ≥ ≥ ≠  
Hence we want to find 
  { }sup ( , ) : ( , )G x t x tπ∗ = ∈ Ψ   (4) 
Define the function 

 
( , , ) ( ) (1 )

( ),

rx

rt rx

f x t G k t e rx F
G e e

α β γ−

−

= + − − −
− −

 

then we can write 
 { }sup : ( , , ) 0, ( , )G G f x t G x t∗ = = ∈ Ψ .  (5) 

We will exploit the fact that f is (jointly) concave in x and t 
to develop an efficient algorithm for solving problem (4).  

Before we can characterize the optimal policy, we need 
some lemmas. 
 
Lemma 1  .G β γ∗ < −   
Proof: First, note that for all 0t ≥ we have 
 ( ) ( ) ( )( 1),rtk t t rt eα α β γ β γ≤ = − ≤ − −  
and for all 0x ≥ we have 
 (1 ) ( )(1 ),rx rxe rx eβ γ β γ− −− − ≤ − −  
hence for every ( , )x t ∈ Ψ we have 

 ( )( )( , ) .
rt rx

rt rx

e e Fx t
e e

β γπ β γ
−

−

− − −≤ < −
−

  

 
Lemma 2  Let 0 .G β γ< < −  The problem 
 { }max ( , , ) : 0, 0Gz f x t G x t= ≥ ≥  (6) 
has a unique solution ( , )G Gx t given by 
 ln( ) ln ,Grx Gβ γ= − −   (7) 

 
0  (0) ,

     
( )  . 

G
rt

if k rG
t the unique value t for which

k t rGe otherwise

α

α

 ′ ≤=  ′ =

  (8) 

(If k is not continuously differentiable, then ( )k t′ should be 
interpreted as a suitably chosen subdifferential of k at t). 
 
Proof: Note that f is separable in x and t. It is thus 
straightforward to show that f is jointly concave in x and t, 
and that (7) and (8) are the first order conditions for a 
global maximum.    
 
Lemma 3  Let 0 .G β γ< < −  Then 

 ( ) ( ).Gsign z sign G G∗= −  
 
Proof: We consider the obvious three cases separately. 
Case 1: 0.Gz >  Define /( ) 0,G Grt rx

Gz e eε −= − >  then 
( , , ) ( , , ) ( ) 0,rt rx

G G G Gf x t G f x t G e eε ε −+ = − − =  and 
hence * ( , ) .G GG x t G Gπ ε≥ = + >   
Case 2: 0.Gz = Then ( , , ) 0,G Gf x t G =  and since 

(0,0, ) 0,f G F=− <  this implies ( , ) 0,G Gx t ≠  so 
( , )G Gx t ∈ Ψ  and ( , ) .G GG x t Gπ∗ ≥ =  Furthermore, for 
arbitrary ( , )x t′ ′ ∈ Ψ  we know ( , , ) 0,f x t G′ ′ ≤  and since 
f is strictly decreasing in G on ,Ψ this implies by (5) that 

.G G∗ ≤  We conclude that in this case .G G∗ =  
Case 3: 0.Gz <  We need to show .G G∗ < If 0,G∗ ≤ we 
are done, since the lemma assumes 0.G> So assume 

( , ) 0x tε π ′ ′= >  for some ( , ) .x t′ ′ ∈ Ψ  We will next 
show that {( , ) : ( , ) }x t x tπ εΦ= ∈ Ψ ≥ is compact. 
Note {( , ) : ( , , ) 0}x t f x t εΦ= ∈ Ψ ≥ , and since (0,0, )f ε  

0,F=− < {( , ) : ( , , ) 0, 0, 0}.x t f x t x tεΦ= ≥ ≥ ≥  Since 
f is continuous in x and t, it follows thatΦ is closed. Using 
that f is separable and concave and that f tends to 
−∞ when either x or t tends to ,∞  it is not hard to show 
thatΦ is bounded. Hence 



 

 

 
sup{ ( , ) : ( , ) }
sup{ ( , ) : ( , ) }

( , )

G x t x t
x t x t

x t

π
π

π

∗

∗ ∗

= ∈ Ψ
= ∈Φ
=

 

for some ( , )x t∗ ∗ ∈ Ψ . But since ( , , ) 0,Gf x t G z∗ ∗ ≤ <  
this implies .G G∗ <  
The three cases together imply the lemma.     
 
Lemma 4  Define ( ) lim ( ),tk k t→∞∞ =  then 
 ( ) (1 ln( / )) 0.k F Gα β γ β γ ∗∞ + − + > ⇔ >   (9) 
 
Proof: Note ( , ,0) ( ) (1 ln( / ))f x t k Fα β γ β γ≤ ∞ + − + −  
for every ( , ) ,x t ∈ Ψ  and that the bound is tight (this is 
easily shown using the same approach as the proof of 
lemma 2). Hence if the condition on the left in (9) is true, 
there exists a ( , )x t′ ′ ∈ Ψ  such that ( , ,0) 0.f x t′ ′ >  But 
this implies ( , ) 0.G x tπ∗ ′ ′≥ >  If on the other hand the 
condition on the left in (9) is false, then ( , ,0) 0f x t ≤  for 
every ( , ) ,x t ∈ Ψ  and this implies 0.G∗ ≤     

 
Theorem 1  If ( ) (1 ln( / )) ,α β γ β γ∞ + − + >k F  then the 
optimal policy ( , )∗ ∗x t  and G∗  satisfy  
 ( )1 ln ,β

γ

∗−∗ = G
rx   (10) 

 ( ) ( )  ( ) (0) ,
0 ,

rte k t G if k G
t otherwise
β γ β γ

∗− ∗ ∗ ∗

∗

 ′ ′− = − > =
  (11) 

 ( )( ) ln 0.β
γα β γ γ

∗∗ −∗ ∗− + − − − =Grtk t G e F   (12) 

If ( ) (1 ln( / )) ,α β γ β γ∞ + − + ≤k F  then 0∗ =G  (i.e., it 
is optimal never to purchase the item).  
 
Proof: Lemmas 2 and 3 imply that the values ,x∗  t∗  and 
G∗ satisfy equations (10), (11) and 
 ( ) (1 ) 0.rt rx rxk t G e e Ge rx Fα β γ

∗ ∗ ∗∗ ∗ − − ∗− + − + − − =  
Substituting (10) into this last equation gives (12). The 
last statement follows from lemma 4 and the fact that 

( , )x tπ →−∞  as t →∞  for any fixed x.    
 

Theorem 1 gives exact optimality conditions. An 
immediate consequence is 
 
Corollary 1 Assume ( ) (1 ln( / )) ,α β γ β γ∞ + − + >k F  
and let G  satisfy the equation  
 ( )ln ,β

γγ β γ−+ = − −GG F   (13) 

then 0∗ =t  if and only if  (0) α
′ ≤ rk G . 

 
Corollary 1 gives the precise conditions under which 

the classical EOQ policy (of not planning to run out of 
stock) is optimal. Theorem 1 inspires the following very 
efficient algorithm to identify the optimal policy and its 
cost. To simplify notation, define 

 
1ˆ ( , ) ( ln , , )

( ) ( ln ) ,
rt

G
r

Ge G

f t G f t G

k t F

β
γ

β β
γ γα γ γ

−

− −

=

= + − − −
 

 

Algorithm A: 
IF ˆlim ( ,0) 0t f t→∞ ≤  THEN 
 : ; : 0t G∗ ∗=∞ =  

ELSEIF ˆ (0, ( ) (0)) 0f kβ γ ′− <  THEN 
 let t∗  be the unique solution to the equation 

ˆ ( , ( ) ( )) 0rtf t e k tβ γ − ′− =  (14) 
(if k is not differentiable, then ( )k t′  is a suitably 
chosen subgradient of k at t); 

: ( ) ( )rtG e k tβ γ
∗∗ − ∗′= −  

ELSE 
 : 0;t∗ =  

let G∗  be the solution to the equation (in G) 
ˆ (0, ) 0f G =  (15) 

END IF 
1: ln G
rx β

γ

∗−∗ =  
 
To prove the correctness of the algorithm, we need the 

following technical lemma.  
 
Lemma 5 The function ˆ( ) ( , ( ) ( ))rth t f t e k tβ γ − ′= −  is 
increasing in t, and by appropriate choices of ( )k t′  
assumes all values between ˆ (0, ( ) (0))f kβ γ ′−  and 

ˆlim ( ,0) 0t f t→∞ ≤  as t varies from 0 to ∞ . 
 
Proof: Note that we can write  
 1 3 2( ) ( , ( )) ( ( , '( ))h t h t k t h h t k t′= + , (16) 
where 
 ( )1

1( ) ( ) '( )rte
rh t k t k t Fα γ−−= − − − , 

 ( )1
2 ( , ( )) ( ) ( )rth t k t e k tγ β β γ −′ ′= − − , 

 3 ( ) ( ln )h x x xγ= − . 
Note that 2 ( , ( ))h t k t′ is increasing in t, and it can assume 
all values between ( ( ) (0)) / 1kβ β γ γ′− − ≥ and /β γ by 
choosing appropriate values for the subgradient ( )k t′  of k 
at t. Note also that 3 ( )h x  is increasing in x for 1x ≥ . We 
conclude that the second term of (16) is increasing in t and 
can assume all values between 3 2( (0, '(0))h h k and 

3 ( / )h β γ .  
Next, we will show that 1( , ( ))h t k t′  is increasing in t as 
well. Choose 0s t> ≥ . Note that the concavity of k 
implies that ( ) ( ) ( ) ( )k s k t s t k s′− ≥ − and ( ) ( )k s k t′ ′≤  
for every choice of subgradients of k at s and t. Hence 

 ( )
( )( )

1
1 1

1 1

1 1

1
( )

( , ( )) ( , ( ))

( ) ( ) ( ) ( )

( ) ( ) ( )

1 ( ) ( )

( )(1 ) ( ) 0,

rs rt

rs rt

r s t

e e
r r

e e
r r

rt e
r s t

rt

h s k s h t k t

k s k s k t k t

s t k s k s

e s t k s

s t e k s

α
− −

− −

− −

− −

− −

− −
−

−

 ′ ′− 
′ ′= + − −

′ ′≥ − + −

′= − −

′≥ − − ≥

 

where the next to last inequality follows since 1 xe x−− ≤  
for all x. Hence 1( , ( ))h t k t′ is increasing in t and assumes 
all values between Fγ− − (inclusive) and 



 

 

( )k Fα γ∞ − −  (the latter value possibly excluded).    
 
Theorem 2  Algorithm A correctly solves problem (4). 
 
Proof: The IF condition of the algorithm is simply the 
condition under which the retailer can’t make a positive 
NPV on the item (see the last part of theorem 1), so 

; 0t G∗ ∗=∞ =  if it is satisfied.  
Define ( ) (0)G kβ γ ′= − then by lemma 2, 0Gt =  

and (ln( ) ln ) /Gx G rβ γ= − − , and the ELSEIF 
condition of the algorithm is equivalent to 0Gz <  which 
in turn is equivalent to G G∗ < by lemma 3. Hence if the 
ELSEIF condition is satisfied,   

( ) ( )rtG e k tβ γ
∗∗ − ∗′= − by (11) and substituting this into 

(12) gives (14). If it is not satisfied, 0t∗ =  by (11) and 
substituting this into (12) gives (15). Finally, lemma 5 
guarantees that (14) has a unique solution ( , ( ))t k t∗ ∗′  
whenever it needs to be solved, and it is easy to show that 
the same holds for (15).    
 

A few comments are in order. First, note that the 
optimality of planned stockouts (the ELSEIF test in the 
algorithm) depends only on (0)k ′ , the fraction of demand 
that is not immediately lost at the moment the retailer first 
runs out of stock. The condition is always satisfied when 

(0) 1,k ′ =  so some stockouts will always be optimal in 
this case. On the other hand, when (0) 1,k ′ < the 
optimality of having some stockouts depends on the value 
of the fixed order costs F, and for small enough values of 
F it will be optimal to avoid stockouts altogether. When 

(0) 0,k ′ =  the IF and ELSEIF tests in the algorithm 
actually coincide (note that (0) 0k ′ = implies 

( ) 0k t ≡ since k is normalized, non-decreasing and 
concave), and hence either the retailer doesn’t sell the item 
at all, or he wants to avoid stockouts altogether. 

The decision on whether to sell the item at all (the IF 
test in the algorithm) depends only on ( ),k ∞ the 
maximum (normalized) fraction of demand that is not lost 
when the retailer has no stock for a very long time. Hence 
the specific form of the function k plays a very limited role 
in making these basic decisions. Of course in order to 
derive an optimal stocking policy in the case that planned 
stockouts are optimal, more information about the pent-up 
demand function is necessary. 

Note that equation (15) can be solved efficiently by 
using Newton’s method to find the unique root y∗ of the 
equation ln 1 /y y F γ− = +  (a convenient starting point 
is 1/ 21 (2 / ) ,y F γ= +  the solution to the approximate 
equation obtained from 21

2ln 1 ( 1)y y y≈ − + − ), and 
then calculating G yβ γ∗ ∗= − . 

Equation (14) can of course easily be solved using 
bisection. When k is differentiable, the conditions under 
which the LHS of (14) is concave involve the third 
derivative of k, so a simple implementation of Newton’s 
method is not recommended. 

When k is piece-wise linear, the LHS of (14) is convex 
in t between breakpoints of ( )k t , while it is concave in 

( )k t′  at the breakpoints. Hence once the breakpoint or 
segment which contains t∗  has been identified, a couple 
of Newton-Raphson steps will quickly yield the solution 
with great accuracy. 
 
5. Estimating the backorder function 

In this section we turn to the issue of implementing the 
model in practice. In particular, one needs to estimate the 
backorder function. We will sketch a number of different 
approaches to this estimation problem that could be useful 
in various circumstances. 

Assume that a web retailer uses a web site that provides 
potential customers with information on how long it will 
be until the retailer can ship the product. Customers then 
either place an order for one unit of the product (which 
will be shipped as soon as it becomes available for 
shipping), or they exit without ordering. The retailer 
collects the following information related to a particular 
product of interest. Over a period of M days, the retailer 
responded to in inquiries that the shipping delay would be 
i days, and these inquires resulted in is sales, 0,1,...,i N= . 
Note that even when the product is available for shipment, 
some potential customers still don’t place an order. From 
this data, we wish to estimate the underlying demand rate 
D and the (scaled) pent-up demand function ( )k t .  

We assume that inquiries are generated according to 
some stationary process with a rate of µ  per day. Let the 
random variable ijS  denote the number of units sold 
resulting from the j-th inquiry that occurs when the 
shipping delay is i days. We assume that { : 1,2,...}ijS j =  
are iid fandom variables with mean iτ . If estimates ˆiτ for 

( 0,..., )i i Nτ = are available, one can estimate the scaled 
pen-up demand function by linear interpolation on these 
estimates: 

 10

1 ˆ( ) , 0,1,2,..., .
ˆ i

i

k Nτ
τ =

= =∑
 

The straightforward approach to estimating the average 
number of units sold per inquiry as a function of the 
number of days until shipment is of course 
 ˆ / .naive

i i is nτ =  
The problem with this approach is that the resulting scaled 
pent-up demand function need not be concave, since it is 
quite possible that in the available data / /i i j js n s n< for 
some j i> . Of course it is counter-intuitive (to say the 
least) that a longer shipping delay would lead to a higher 
expected number of units sold per inquiry, so we will 
require that our estimates satisfy 
 1 0ˆ ˆ ˆ0 ... 1.N Nτ τ τ−≤ ≤ ≤ ≤ ≤  
In the remainder of this section we discuss several ways to 
handle this estimation problem. 
 
5.1 Parameter Estimation from a Specific 
Functional Form 

The exponential pent-up demand function is given by 
 ( ) (1 ).tDD t e κθ

κ
−= −  



 

 

This form arises if we assume that pent-up demand 
satisfies the differential equation ( ) ( )D t D D tθ κ′ = −  
with starting condition (0) 0D = . Here κ is the rate at 
which pent-up demand dissipates (e.g. because it is 
satisfied by a competitor or because substitutes are 
acquired by consumers), and θ is the fraction of demand 
that is not immediately lost when the retailer runs out of 
stock. So there is exponential decay of pent-up demand, 
comparable to radioactive decay.  

It is not hard to show that the exponential pent-up 
demand function satisfies our assumptions if 0κ> and 
0 1θ≤ ≤ . To be complete, we have ( ) (1 ) /tk t e κθ κ−= − , 

( ) /k θ κ∞ = , ( ) tk t e κθ −′ = and (0)k θ′ = . 
A simple approach to estimating values for κ and θ is 

to minimize 

 0

0

2

1 1
(1 )i

i

N
n s k
s n

i
eθ

κ
−

= =

  − −   ∑ ∑ , 

the squared sum of errors between the values of k 
calculated using the naïve estimates ˆ naive

iτ and the values of 
k calculated with the specified function. 

An alternative specific functional form is the 
logarithmic function given by 
 ( ) ln(1 ).DD t tθ

κ κ= +  
It is easy to verify that this implies ( ) ( / ) ln(1 )k t tθ κ κ= + , 

( )k ∞ =∞ , ( ) /(1 )k t tθ κ′ = + and (0)k θ′ = . 
 
5.2 The Customer Utility Approach 

Define the average residual utility R U p= − , where 
U is the utility that the average customer derives from the 
product if it is immediately available, and p is the 
purchase price. In addition, a customer has a disutility for 
waiting for the item, so let ( )b x be the backorder disutility, 
if the customer has to wait x time units. Then a customer 
decides to purchase the item if and only if 

( ) 0R b x ε− + > , where ε is a customer specific random 
variable with mean 0, and x is the time the customer has to 
wait for the item. For specific functional forms of 

( )b x one can use probit or logit regression analysis to 
estimate Pr{ ( ) 0}R b x ε− + > , and the normalized 
pent-up demand function is calculated as 

 
( )

0
( ) Pr ( )

t
k t b x R dxε= > −∫  

Clearly, since Pr( ( ) )b x Rε> −  is non-increasing in x and 
cannot exceed the value of 1, the resulting function 

( )k t satisfies the standard assumptions of section 2.  
If the function ( )b x is assumed to be linear, then probit 

estimation leads to 
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k

κ

κ

ν κ ν
κ ν ν

ν

= Φ − −Φ −
′ ′=Φ − =Φ −
∞ = Φ −

 

where Φ denotes the standard normal cumulative 
distribution function, and 1( ) ( ) (1 ( ))y y y y′Φ =Φ − −Φ is 
the familiar standard normal linear loss function (see e.g. 
[23, page 458]), and ν and κ are parameters obtained from 
the probit regression. Clearly, the estimated parameter κ 

needs to be positive for this approach to make sense. 
If the function ( )b x is assumed to be linear, then logit 

estimation leads to 

 

1

1

( ) [ln(1 ) ln(1 ]

( ) 1/(1 )
( ) ln(1 )

t

t

k t e e

k t e
k e

ν ν κ
κ

κ ν

ν
κ

−

−

= + − +
′ = +
∞ = +

 

where ν and κ are parameters obtained from the logit 
regression and again we need κ  to be positive. 

The utility approach has as additional advantages that 
on can correct for price changes (and possibly additional 
environmental factors) in the estimation, as well as say 
something about the impact of price changes (and possibly 
additional environmental factors) on optimal policy, profit, 
etc. 
 
5.3 Piecewise Linear Approximation Using 
Isotonic Regression 

We can use a constrained maximum-likelihood 
approach to obtain estimates ˆiτ for the values iτ that 
satisfy the constraints 1 0ˆ ˆ ˆ0 ... 1.N Nτ τ τ−≤ ≤ ≤ ≤ ≤ This 
amounts to finding the isotonic regression of the points 
( , / )i ii s n with weights in (see [19, p. 32]). The result is a 
piece-wise linear approximation with breakpoints 

0 10 nt t t= < < < , and slopes 0 11 θ θ≥ >  
0nθ> > ≥ . If we define ( ) max{ : }ij t i t t= ≥ for any 

0,t ≥ then 
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6. Implications 

For on-line retailers, this is an ideal opportunity to 
examine their inventory management policies in the 
context of customer behavior.  Most sites already have the 
technology to collect extremely detailed data about the 
real-time shopping behavior of visitors. The policy 
algorithm and estimation techniques presented here lend 
themselves to automation quite easily, in the same manner 
that simple EOQ and stocking level calculations are 
standard routines in many existing enterprise software 
solutions.  They can be used directly to change the 
stocking policy as well as parameters on an automatic 
basis, or more realistically, be used to suggest changes to a 
decision-maker. 

In case of stockouts, many savvy retailers list similar 
items to promote substitution, and also provide the 
restocking date to allow the customer to wait.  Thus, 
substitution and waiting by customers allows them to 
attract a larger market (or at a lower cost) than if they had 
a fixed assortment of stocked items.  Hence there is a 
growing trend to allow customers to make their own 
substitution/wait/leave decisions. 

Whatever be the (arguable) benefits of this policy in 



 

 

the “bricks” world of retailing, there are many more 
benefits for the “clicks” world of on-line retailing.  In 
many cases customers are conditioned to a shipping delay, 
and may be willing to wait for a short time in order to get 
their first choice.  The on-line world provides a wealth of 
tracking information about customer preferences, 
stockout and substitution behavior.  In addition, it is 
possible to ensure that when stocks arrive, all backlogs are 
instantaneously cleared.   To these organizations an 
understanding of customer waiting behavior is critical in 
order to implement profitable intermittent stocking 
policies - clearly a strong argument for systematic analysis 
of stockout behavior (as well as substitution behavior) in 
the on-line retailing industry. 
 
6.1 Enterprise Resource Planning (ERP) 
Software 

Existing ERP software today has pre-programmed 
routines that allow calculation of inventory parameters, 
e.g. safety stock (using previous order data), reorder 
points, and order quantities.  We have included the 
algorithms that are implementable as additional routines 
to find out the optimal stocking policy for items of interest, 
as well as an algorithm to calculate maximum likelihood 
estimators (in linear running time).  This allows interested 
firms to directly implement the policies that we describe 
here. 

 Just as most stocking level calculation procedures are 
used not to directly change values but to suggest changes 
to a decision maker, we envisage that the additional 
algorithms presented here can be used to suggest changes 
in policy to the decision maker.  This allows for a degree 
of flexibility that is currently not available in stocking 
policy decisions. 

 
6.2 Other Considerations 

The periodic availability policies that we have 
described have some other implications as well.  Since we 
decrease the average inventory holding time in such 
policies (as compared to a pure EOQ policy), this has an 
impact on accounting measures, like Return on Equity.  
For online firms this may be an important consideration if 
their performance, incentives and even existence depends 
upon common accounting measures of profitability. 

Since each order is larger then the pure EOQ policy 
order, there may be quantity discounts or shipping 
economies that kick in if a periodic availability policy is 
adopted.  While this is not explicitly modeled in this paper, 
it is plausible that quantity discounts or shipping 
economies makes such a policy even more attractive. 

While we have looked at the inventory policy that can 
capitalize on the increased visibility of customer behavior, 
it is equally important to have business processes that can 
support it.  For instance, it is necessary to have logistics 
functions that can integrate well with a regular activity of 
filling backorders.  Online business models have to be 

supported by all functional areas in tandem.  It is certainly 
not enough to merely apply a periodic availability 
inventory policy at the warehouse. 
 
7. Conclusion 

Our model is just a start however. In the future, 
sophisticated on-line retailers will use their customer data 
to model customer behavior in the face of stockouts, price 
changes, available substitutes in the retailer's collection, 
and possibly competitive actions. Hence there will be an 
increasing need for models that integrate the traditional 
emphasis on replenishment decisions with other aspects of 
logistics systems.  

In this paper we start from a different perspective on 
stockouts and the cost of backorders.  We have extended 
the EOQ model in an intuitive manner which shows the 
specific conditions under which the EOQ model is optimal, 
and conditions under which EOQ is not optimal (or even 
profitable) but periodic availability is optimal and 
profitable.  This represents a simple but powerful 
extension of this classic inventory model. 

Potential extensions to this research include 
considering many items to be stocked at one location, the 
issue of substitution between multiple items, and the case 
of competition between retailers using different stocking 
policies.  Each of these occurs in practice, and is relevant 
to both research and industry. 

There are important applications to the field of on-line 
retail inventory, and there are implications for all 
inventory systems, including supply chains.  In any 
situation where a stockout causes a partial non-linear loss 
of sales we assert that it is important to asses the 
profitability of periodic availability. 
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