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Abstract 

This paper formulates and analyzes a model to 
integrate inventory management and promotion decisions 
in a multi-product environment. The model assumes that 
actual demands for the items depend on both item 
availability and the level of promotion used for the item. A 
notable feature of the model is that customer demand is 
partially backordered, where the fraction of demand 
backordered depends on how long a customer has to wait 
for delivery. The firm is assumed to have a limited 
promotion budget. The effect of a promotion is modeled 
through an increase in the demand rate of the item being 
promoted. We formulate a general, non-stationary, finite 
horizon version of the problem. However this problem is 
very difficult to solve optimally. In order to develop 
insights into the nature of the solution we formulate a 
stationary version of the general problem with the 
additional restriction that only one item can be promoted 
at a time. An efficient solution approach is developed for 
this stationary version, and limited numerical results are 
provided. These numerical results indicate that a 
coordinated approach to promotions and logistics 
decisions can lead to significantly higher profit for the 
firm. 
 
1. Introduction  

The emergence of internet based communication 
channels has enabled new levels of coordination in global 
manufacturing and logistics. Initiatives such as 
Collaborative Planning and Forecasting, electronic 
marketplaces, B2B and retailing over the web allow 
companies to develop new methods for designing and 
managing logistics systems. From the operations 
researcher’s perspective, the challenge is in developing 
models that incorporate the additional data that is 
available in these environments and in using the data to 
implement more efficient and effective logistics policies. 
Since so much more data on customer behavior can be 
collected, we expect that these models will encompass 
more and more sophisticated modeling of customer 
behavior. This will allow a closer integration of marketing 
decisions with basic logistics decisions such as inventory 
management. 

The goal of this paper is to develop a model to 
illustrate how marketing and operations decision-making 
can be integrated. The model we develop assumes that 
demand for items depends on both item availability and 
the level of promotion used for the item. We also assume 
that there is a limit on the amount of promotional activities 

that the firm can engage in (this may reflect a limited 
promotion budget, a limit on the ability of consumers to 
absorb the promotional message, or a limit on the 
capacity – space on a web site – of the delivery vehicle for 
the promotional message). By choosing the promotions 
carefully and integrating the promotion schedule with 
inventory management the firm should be able to increase 
profits compared to a situation where inventory 
management and promotions are independently managed.  

An important aspect of Internet retailing operations is 
the planning and coordination of advertising and 
promotions.  Critical pages on a web site display featured 
items and certainly have an effect on the sales for these 
items.  This behavior is similar to point-of-purchase 
displays in physical retailing, but is much more powerful 
since it can encompass any items that the retailer sells, not 
just those that satisfy certain size and selling price 
constraints. 

Building upon the ability of e-commerce to capture 
more details of a customer’s shopping behavior we 
present a scheme to coordinate customers purchase 
behavior with promotions and inventory stocking 
decisions.  Our model shows how to coordinate the scarce 
resource of featured item advertising with inventory 
decisions in order to maximize the revenue from the 
assortment of items the retailer sells and to minimize the 
inventory costs. 

Our model can be viewed as a generalization of the 
classical Economic Order Quantity model [10], and the 
related literature is vast, see e.g. [9] [23].  

There is a small but growing literature that considers 
the impact of customer behavior on operations decisions. 
One strand of this body of work focuses on substitution 
behavior (see [1] [2] [7] [15] [21]).  

Another strand focuses on promotion decisions. 
Cheng and Sethi [5] consider a periodic review model 
coupled with promotion decisions.  Huchzermeier et al. 
[11] study the effect of consumer decisions when faced 
with promotions on the supply chain.  Iyer and Jianming 
[12] show that information sharing is important in the 
context of retail promotions. In contrast to these papers we 
consider a continuous review model, explicitly consider 
stockouts as a cost reducing tactics, and consider multiple 
items in the context of limited promotions, as is the case 
for featuring items on web pages. 

In our model we assume that actual demand depends 
on whether the item is in stock or not (in which case the 
demand rate further depends on the amount of time that 
will elapse until backorders can be filled). Some models 
where only a fraction of the demand is backordered when 



 

a stockout occurs are examined in [16] [17] [20] [22].  
Backorders have been the subject of extensive research 

in the context of stochastic models. An order point order 
quantity model with a mixture of backorders and lost sales 
is investigated in [19]. Lost sales will occur when 
backorders exceed a certain threshold level. General 
backorder costs in stochastic inventory models are 
discussed in [4], and in [3] backorder costs have fixed and 
proportional components. 

Another approach to modeling the effect of stock-outs 
can be found in [18], where it is assumed that the demand 
rate is influenced by backorders. The approach of 
modeling backorders as dependent on the time until they 
can be filled was used by us in a somewhat different 
context in [8]. 

There is also extensive research on perishable 
inventories, when the stock at hand may decay, or become 
obsolete. One representative paper [14] integrates the 
stocking decision with backordering. While we do not 
have perishable inventories, we have “perishable” 
backorders, in the sense that backorders grow less than 
proportionately with the elapsed stockout time. 

Finally, [13] uses an exponential pent-up demand 
function in the context of stochastic lead times. The focus 
is on algorithms to obtain the optimal stockout period 
without deriving any structural results. In this paper we 
model customer response to backorders through a general 
function, which allows various reaction curves to be fitted 
using available customer data. For details see [8].  

The paper is structured as follows. In the next section 
we develop a general model for integrated promotion and 
inventory management over a finite time horizon. This 
model will be seen to be too complicated to solve 
optimally, hence we develop a simpler average cost 
version of the model in section 3. In section 4 we show 
how the single item average cost version of the model can 
be solved optimally, and in section 5 we will extend the 
analysis to the multiple item problem. Section 6 will 
discuss several numerical examples while in section 7 we 
give conclusions and ideas for further work in this area. 
 
2. The Finite Horizon Model 

We introduce the following notation. 
N = the number of items in the assortment, indexed by 

i, 
T� = length of the planning horizon, 

H
iD = demand rate for product i when it is being 

promoted, 
L
iD = demand rate for product i when it is not being 

promoted, 
ip = net margin (excluding inventory holding cost, 

fixed costs and promotions costs) per unit sold for item i, 
ih = inventory holding cost (per unit per time period) 

for item i, 
iF = fixed ordering cost for item i, 
( )ik u = fraction of demand that can be backordered 

when item i is out of stock if the backorder will be filled in 
u time units, assumed to be non-increasing in u, 

i = cost per time unit of running the promotion for 
item i, 

c

i = promotional “weight” for item i, measures how 
much promotional capacity is consumed by fixed ordering 
cost for item i when it is being promoted, 

w

W = total promotional capacity available (cannot be 
exceeded at any point in time), 

( )iX t = 1 if item i is being promoted at time t, 0 
otherwise, 

iK = total number of replenishment orders placed 
during the planning horizon for item i, 

k
iQ = order quantity for item i at the time that the k-th 

order is placed for item i, 
k

iT = time that the k-th order is placed for item i, 
( )iS t = physical inventory for item i at time t, 
( )i tθ = amount of time (measured from time t) until the 

next delivery is received for item i, 
ˆ ( )iD t = effective demand rate at time t for item i. 

We assume that the demand for each item is 
deterministic. While there is physical inventory for item i, 
the demand rate is H

iD  while the item is being promoted, 
and L

iD  while it is not being promoted. If there is no 
physical inventory for item i, and it is u time units before 
the next delivery, the effective demand rate is   
while the item is being promoted and  while it is 
not being promoted. Hence promotion affects the base 
demand rate, while physical inventory and the time until 
the next delivery affect the fraction of the base demand 
rate that is converted into sales. With these assumptions, 
the sales rate for item i at time t is equal to 

( )H
i iD k u

( )L
i iD k u
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The company will thus try to maximize 
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subject to the following constraints. 
Don’t exceed the promotional capacity: 
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Definition of sales: 
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Physical inventory balance constraints: 
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Order must clear the backlog: 

 



 

  (6) 
1 0
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Order sequencing: 
  (7) 1, 1,..., 1; 1,..., .k k

i i iT T k K i N+< = − =
Definition of iθ : 

  (8) 1( ) , ; 1,..., ; 1,..., .k k k
i i i i it T t T t T k K i Nθ −= − < ≤ = =

( )iX t  is binary: 

 ( ) {0,1}, 0 ; 1,..., .iX t t T i∈ ≤ ≤ =� N  (9) 
Clearly this problem is NP-Complete and would be 

extremely difficult to solve in the general case. Instead of 
attempting this (or developing heuristics for it) we instead 
formulate a simplified version in the next section. 
 
3. A Simplified Model 

In this section we will simplify the general problem 
formulated in the previous section in several ways. First, 
we will assume that only one item can be promoted at a 
time. This corresponds to assuming that iw  = 1 for all 
items and that W = 1. The second simplification is 
achieved by formulating an average profit version of the 
model, by assuming that all items are on the same 
replenishment cycle, and by requiring that an item can be 
promoted only once per cycle. Hence in this problem we 
have the following decision variables (in addition to the 
notation introduced earlier): 

T  = the common cycle length for all items, 
iϕ  = the amount of time that item i is promoted during 

the cycle, and 
i

Finally, we define 
Q  = the order quantity for item i. 

( , )i i TϕΠ  = maximum profit that can be achieved for 
item i in a cycle of length T  when a single promotion of 
length iϕ  is used and a single replenishment order is 
placed for item i. 

We assume that a stationary policy is followed (clearly 
this is optimal in the simplified model), and since every 
item can be promoted only once per cycle, a feasible 
promotion schedule exists as long as total promotion time 
during a cycle does not exceed the length of the cycle. 
Hence the problem we want to solve can be formulated 
thus: 

 
1

1

1max ( , )

s.t.

0, 1, ,

N
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In the next section we will show how ( , )i i TϕΠ  can be 
found efficiently for a given iϕ  and . T
 
4. Solving the Single Item Sub-problem 

In this section we will formulate the single item 
sub-problem, derive properties of the objective function, 
and give an efficient algorithm to solve it. Since we will 

only consider one item here, we simplify the notation 
somewhat by dropping the subscript i in this section. 

We will define a cycle to run from the moment the item 
runs out of stock (at time 0) until the item runs out of stock 
again (time ). Let x = the time at which the 
replenishment order arrives. During the cycle we can 
distinguish two distinct periods: when 0 ≤ t < x, backlog 
accumulates at a rate of  times the demand rate 
(which depends on whether a promotion is in effect). 
When x ≤ t < , sales occur directly from stock. (Note that 
in an extreme case it is possible that x = 0, i.e., the item is 
never stocked, the company takes orders and fills those 
orders when a replenishment order arrives.) The first issue 
to decide is when the promotion (which is assumed to 
have a length 

T

(k x t− )

T

ϕ < T ) should be scheduled.  
 

Proposition 1. Let x (= the time during a cycle that the 
inventory runs out) be given. Let y = the start time of the 
promotion that maximizes the per cycle profit. Then  
 y ≤ x ≤ y+ϕ ≤ T (11) 

 
Proof. It is tedious but not difficult to show that all the 

other cases are dominated by one that satisfies equation 
(11).  

 Next, define z = x – y. Then (11) is equivalent to 
 max(0, )x T zϕ ϕ+ − ≤ ≤  (12) 

For given stockout time x and promotion start time y 
satisfying (11), the total units sold per cycle is given by 
 [ ] [ ]( )( , ) ( ) ( )L H LQ x z T K x D K z D Dϕ= − + − −  (13) 
where  

 
0

( ) ( ) ,
x

K x x k t dt= − ∫  (14) 

and total inventory (in units of product × time units) is 
 ( ) ( ) ( )2 21 1

2 2( , ) .L HH x z T x D z D Dϕ= − + − − L  (15) 
Note that K is convex, and hence Q(x,z) is jointly concave 
in x and z. Since H(x,z) is jointly convex in x and z it 
follows that Π(x,z) = pQ(x,z) – hH(x,z) – F is jointly 
concave.  
 
Proposition 2. The policy ˆ ˆ( , )x z that maximizes the profit 
per cycle for a given promotion length ϕ and cycle length 
T can be characterized as follows. If hT ≤ p(1 – k(0)) then 
ˆ 0,x =  otherwise x̂  solves the equation 

 ( )( ) 1 0.− − − =h hT
p pk x x  (16) 

If hϕ ≤ p(1 – k(0)) then ˆ  otherwise  solves the 
equation 

0,z = ẑ

 ( )( ) 1 0.ϕ− − − =hh
p pk z z  (17) 

Proof: Note that 

 ( ) ( )( , ) 1 ( ) ,Lx z h T x p k x D
x

∂Π
= − − −⎡ ⎤⎣ ⎦∂

 (18) 

 ( ) ( )( , ) 1 ( ) ( )H Lx z h z p k z D D
z

ϕ∂Π
= − − − −⎡ ⎤⎣ ⎦∂

.  (19) 

Hence the first order conditions are equivalent to (16) and 

 



 

(17). However, these don’t give the solution if any of the 
constraints in (12) is violated. It is easy to show that the 
left hand sides of (16) and (17) are decreasing in x and z.  
If we substitute z = ϕ in the LHS of (17) we obtain a 
non-positive number, and hence ≤ ϕ.  If we substitute z 
= 0 in the LHS of (17), we obtain a positive number as 
long as  hϕ > p(1 – k(0)), and hence in that case satisfies 
equation (17).  

ẑ

ẑ

Substituting ˆx T z ϕ= + − into equation (16) yields a 
non-positive number since the second term cannot exceed 

 by equation (17). Hence ˆ( ) 1k z − ˆx T z ϕ≤ + − . Finally, 
substituting in x = 0 into (16) concludes the proof. 

 
To conclude this section, we prove the following 

proposition. 
 

Proposition 3. Assume 
0

1lim ( ) 0,
x

x
k t dt

x→∞
=∫ then 

(i) 1lim max{ ( , )} 0
T

x z
T→∞

Π =  

(ii) 
0

1lim max{ ( , )} .
T

x z
T↓

Π = −∞   

Proof: To prove (i), first note that  is bounded 
from above by 

ˆ ˆ( , ) /Q x z T
HD as while ,T → ∞ ˆ ˆ( , ) /H x z T  

approaches ∞ as long as 2ˆ( ) /T x T− → ∞ . So assume 
for all T. Then 2ˆ( ) /T x T U− ≤ x̂  grows about as fast as T, 

and the assumption insures that → 0 as 
.To prove (ii), note that 

ˆ ˆ( , ) /Q x z T
T → ∞ ˆ ˆ( , )x z FΠ → − as    0.T →

 
5. Solving the Multi Item Problem 

In this section we give an efficient algorithm to solve 
the multi-item problem (10) formulated in section 3. First 
of all, using the derivation in the previous section it is not 
hard to show that note that ( , )i i TϕΠ is jointly concave in 
ϕi and T. Hence the objective function in (10) is 
quasi-concave. To solve (10) we adopt the following 
approach. Define 

  (20) 
1

1

max ( , )

( ) ,s. t .

0 ( 1, , )

N
i ii

N
ii

i

T

G T T

i N

ϕ

ϕ

ϕ

=

=

⎧ ⎫Π
⎪⎪= ⎨ ⎬≤
⎪ ⎪

≥ =⎪⎩

∑
∑

…

⎪⎪

⎪⎭

 ( )21
2( ; , ) ( ( )) ( ) ,i i if u S D p S K u h S u D= − − −  (21) 

  (22) { }( ; , ) max ( ; , ) : 0 ,i ig S D f u S D S uλ λ= − ≥

then 
 ( ) ( )( , ) ;0, ;0, ,ϕ ϕΠ = + − −L H L

i i i i i iT g T D g D D Fi

⎫
⎬
⎭

 (23) 
and the Lagrangian of (20) can be written as follows. 
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Note that we can write the inner maximizations in (24) as 
follows: 

 ( )210, 0
2
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ϕ
λϕ
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and that the objective function in (25) is jointly concave. 
Using the first order conditions and (17), one readily 
shows that the optimal solution to (25) is given by 

 
1

ˆˆ ( ) 0, ( ) 0 if 1

ˆ ( ) ( )
otherwise

ˆ ˆ( ) ( ) (1 )

i i i
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where . Hence these sub-problems 
are particularly easy to solve. The second major term in 
(24) is therefore a standard Lagrangian optimization 
problem that is quite easy to solve numerically. Similarly, 
note that finding 

1/( ( ))= −H L
i i i ir p D D

( );0, L
i ig T D  merely requires solving 

(16). 
 

Therefore G(T) can be readily found for any T. So we 
are finally ready to give the approach to solving the 
problem 
 , (27) max{ ( ) / : 0}G T T T >
which of course is merely a different way of stating (10). 
Define ( ; ) ( ) .B T G T Tα α= − It is not hard to show the 
following  
 
Proposition 4.  
(i)  If ( ; ) 0B T α > . for some α ≥ 0 and T > 0 then α∗Π >  
(ii)  If max{ ( ; ) : 0}B T Tα ≥ ≤ 0 then .α∗Π ≤  
(c)   B(T;a) is concave in T. 

 
Using this one can easily devise efficient algorithms to 

solve equation (10). The details will be left to the reader. 
For other examples of this approach see [6] [8]. 

 
6. Numerical results  

In this section we will provide the results from a 
modest numerical study. In the study we assume that 

( ) iu
ik u e µ−=  throughout. Example 1 has N = 4 identical 

products with parameters as follows: 
  20, 14, 3, 0.2, 10, 1H L

i i i i i iD D p h F µ= = = = = =  (28) 
For this case the optimal solution is 

  (29) 
0.1862, 0.0436, 0.6837,
2.735, 39.17, 156.69.

i i i

i

x z
T

ϕ= = =
= Π = Π =

First of all, it is interesting to see what happens when 
marketing and operations don’t coordinate on setting the 
cycle length T. Figure 1 shows the total profit that is 
achieved when marketing arbitrarily chooses the cycle 
length and the inventory policy used is optimal given the 
cycle length. 

The figure clearly shows a substantial penalty in terms 
of lost profit when the promotion cycle is too short, and a 
much less severe penalty when the promotion cycle is 
longer than optimal. Part of the steep decline in profits 
with a short cycle may be due to the model assumption 
that inventory cycles and promotion cycles must coincide. 

 



 

When promotion cycles become very short, one 
replenishment order might be placed to cover two or more 
promotion cycles. We don’t consider this possibility here. 
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Figure 1: Maximum total profit given the cycle length T for 
Example 1. 

 
Next, we consider the impact of the customers’ 

willingness to wait for an out of stock item. This is 
captured in the model through the parameter µ of the 
function k(u). The larger µ, the less willing customers are 
to wait. In the base case when µ = 1, the fraction of 
customers that is willing to wait one time unit is equal to 
exp(-1) = 0.368. In Figure 2 we show base case profit as a 
function of T for µ = 0.1, µ = 0.5 and µ = 2.0, with other 
parameters as in (28).  
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Figure 2. Impact of promotion cycle length T for varying 
customer willingness to wait for Example 1. 

This shows that the profit is less sensitive to long 
promotion period lengths when customers are less 
sensitive to stockouts. For short promotion periods there is 
virtually no difference, which is accounted for by the fact 
that stockout durations are very short when the order cycle 
is short and hence fewer lost sales occur.  
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Figure 3: Optimal policy and profit as functions of fixed cost 
Fi for Example 1. 

Next, we consider the impact of the fixed cost on the 
optimal policy and its cost, see Figure 3. This figure uses 
the base case parameters but varies the fixed cost Fi from 1 
to 50. As expected, the optimal cycle length T increases as 
the fixed cost increases, and the optimal profit Π* 
decreases. Since there are 4 products with identical 
parameters in this example, the optimal policies are 
identical as well. The promotion length ϕi is always equal 
to 25% of the cycle length T and the parameters xi, yi and zi 
show little change when expressed as a proportion of the 
cycle length.  

Finally, we will consider an asymmetrical example. 
The parameters for Example 2 are:  

  (30) 1 2 3 422, 20,

14, 3, 2, 1µ

= = = =

= = = =
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Figure 4. Optimal policy and profit for item 1 as functions of 
Fi for Example 2. 

The optimal policies for item 1 are shown in Figure 4. In 
this example we see that when Fi is small (less than about 
4), y1 = 0, ϕ = T and x1 = z1, i.e., item 1 is always being 
promoted, even though the item is not always in stock. 
The duration of the stockout is short enough however to 
prevent serious loss sales. As the fixed cost Fi increases, 
increasing inventory holding costs make it more 
advantageous to  incur more stockouts for item 1 and 
therefore it becomes less attractive to do promotion on 
item 1, which allows promotions to be scheduled for the 
other items as well. Note that the optimal profit for item 1 
is not a convex function of Fi at the point where 

 



 

promotions for the other items become attractive. The 
optimal policies and profits for items 2, 3 and 4 are 
depicted in Figure 5. 
 

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50

F i

0

5

10

15

20

25

30

35

40

Π* (right scale)

 T 

 ϕ 

x

z

y

 
Figure 5. Optimal policy and profit as functions of Fi for 
items 2, 3 and 4 in Example 2. 

Items 2, 3 and 4 are not scheduled for promotion until 
the fixed cost Fi exceeds about 4, and these items consume 
more and more of the total promotion budget as the fixed 
cost increases (at Fi = 50, about 40% of a cycle is used to 
promote item 1, and about 20% is used for each of the 
other three items). Note that the optimal policies in this 
example are neither convex nor concave functions of Fi. 

 
7. Discussion 

It is not hard to come up with interesting 
generalizations of our model. In the first place, the 
reaction of customers to promotions is very simple in our 
model. An obvious modification would be to make the 
sales rate during promotions a function of how long the 
promotion has been going on, similar to the backlogging 
rate being dependent on how long the customer has to wait 
until the item will be delivered. A second modification 
could be to allow several promotions to go on 
simultaneously, possibly accompanied by a segmentation 
of customer market. Both these modifications would make 
the model more realistic, but estimating the necessary 
parameters would become more difficult.We have 
demonstrated that it is quite possible to combine logistics 
aspects and marketing aspects in a comprehensive model. 
The advantage of this is obvious: as companies acquire 
better and more comprehensive information systems, 
much more details about customer preferences and 
behavior become available, and companies can use this 
information to improve both the service to their customers 
and their own bottom line. 

The models in this paper are just the beginning, 
however. An operational model takes into account the 
specific information available in a practical situation, and 
uses this to make recommendations that tally with the 
business model that the company is trying to implement. 
This requires a lot of customization in the modeling 
approach. On the other hand, information system 
implementers need to take into account what information 
is needed to estimate and implement the more and more 

sophisticated models that researchers develop. It is our 
hope that this paper can make a contribution to this 
necessary dialogue. 
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