
Stochastic Multilevel Programming with a Hybrid Intelligent

Algorithm

Jinwu Gaoa, Baoding Liub

Uncertainty Theory Laboratory, Department of Mathematical Sciences

Tsinghua University, Beijing 100084, China
ajgao@orsc.edu.cn bliu@tsinghua.edu.cn

Abstract: A framework of stochastic multilevel pro-
gramming is proposed for modelling decentralized
decision-making problem in stochastic environment.
According to different decision criteria, the stochastic
decentralized decision-making problem is formulated as
expected value multilevel programming, and chance-
constrained multilevel programming. In order to solve
the proposed stochastic multilevel programming mod-
els for the Stackelberg-Nash equilibriums, genetic algo-
rithms, neural networks and stochastic simulation are
integrated to produce a hybrid intelligent algorithm. Fi-
nally, two numerical examples are provided to illustrate
the effectiveness of the hybrid intelligent algorithm.
Keywords: Multilevel programming; stochastic pro-
gramming; neural network; genetic algorithm

1 Introduction

In many decision processes, there are multiple decision
makers arranged within a hierarchical administrative
structure. These decision makers have divergent even
conflict objectives, which intervenes in the decisions to
be made. This is the so called decentralized decision-
making problems, which has long been recognized as
an important and challenging topic in many research
areas including economics [1][8][16][23], transportation
[9][56][59], engineering [19][52], and so on.

Multilevel programming was first proposed by
Bracken and McGill [14][15] for dealing with decentral-
ized decision-making problems. After that, a special
case called bilevel programming, which is equivalent to
a two person Stackelberg game, has attracted much
attention. In [10], Ben-Ayed and Blair proved that
the bilevel programming problem is NP-hard. How-
ever, many numerical algorithms have been designed
for solving this problem. For example, implicit enu-
meration scheme [17], the kth best algorithm [12][13],
complementary pivot algorithm [13][28] , grid search al-
gorithm [4][5], branch-and-bound algorithm [7][25], de-
scent algorithm [53]. General cases with multiple fol-
lowers [6][32] or multilevel levels [2][4][5][57] were also
discussed.

Real-world situations are often not deterministic. For
instance, in economic systems, costs and demands are
often subject to fluctuations and difficult to measure.

In engineering, external conditions and measurement
or manufacturing errors introduce uncertainty into the
problems. These situations emphasize the need for
models which are able to tackle uncertainty inherent
in decision systems. However, there is little research in
literature about decentralized decision making problem
in uncertain decision systems. In [50], Patriksson and
Wynter discussed stochastic mathematical programs
with equilibrium, which includes stochastic bilevel pro-
gramming as a special case. In [51], Sakawa, et al. dealt
with multilevel programming problems with fuzzy pa-
rameters by a fuzzy interactive approach [30][31][54].
The fuzzy interactive approach is formulated by com-
bined use of the fuzzy tolerance membership functions
and multi-objective decision-making, which makes the
original problem much more simplified, and much eas-
ier to solve. However, it differs the traditional solution
concept, Stackelberg-Nash equilibrium, because it is as-
sumed that decision makers at all levels are essentially
cooperative.

For the purpose of tackling uncertainty in deci-
sion systems, various stochastic programming models
have been formulated in literature, among them we
want to mention expected value model, and chance-
constrained programming model [18]. Motivated by
the above mentioned works, in this paper, we pro-
pose two classes of stochastic multilevel programming
models including expected value multi-level program-
ming model (EVMLP) and chance-constrained mul-
tilevel programming (CCMLP), and design an intel-
ligent algorithm for Stackelberg-Nash equilibrium of
the proposed stochastic models. Besides a new model
CCMLP, the proposed EVMLP may have multiple fol-
lowers, which distinguishes from stochastic mathemat-
ical programs with equilibrium [50]. Furthermore, we
employ the Stackelberg-Nash equilibrium solution con-
cept, which distinguishes our work from that of [51].

The purposes of this paper are twofolds, one is to
establish an EVMLP and a CCMLP for a stochastic
decentralized decision making problem with multiple
followers. The other is to design efficient numerical al-
gorithms for the Stackelberg solution. Toward that end,
the following sections are organized as follows. Section 2
discusses the formulation of EVMLP and CCMLP, then
the concepts of Nash equilibrium and Stackelberg-Nash

equilibrium are defined in this section. In Section 3.1,
we first discuss how to approximate the uncertain func-
tions involved in the proposed models. The motivation
of the method is as follows, when searching for Nash
equilibrium and Stackelberg-Nash equilibrium, we need
many times of stochastic simulation to evaluate the un-
certain functions. It is known that stochastic simula-
tions are time-consuming processes. In order to speed
up the solution process, we desire to use relatively sim-
ple functions, neural networks (NNs), to replace these
uncertain functions after they are well-trained by input-
output data produced by stochastic simulations. Af-
ter that, Section 3.2 discusses approaches on comput-
ing Nash equilibrium with respect to a given control
vector. Based on the above discussion, Section 3.3 dis-
cusses how to solve the EVMLP and CCMLP for the
Stackelber-Nash equilibrium. To do this, we embed the
above trained NNs, and algorithms for the Nash equi-
librium into a GA to produce a hybrid intelligent algo-
rithm (HIA). At the end of the paper, two numerical
examples are provided to show the effectiveness of the
proposed algorithm.

2 Stochastic Multilevel Pro-
gramming

In order to formulating a stochastic version of multilevel
programming, we start from a deterministic one.

Consider a decentralized two-level decision system in
which there are one leader and m followers. Assume
that the leader and followers may have their own de-
cision variables and objective functions, and the leader
can only influence the reactions of followers through
his own decision variables, while the followers have full
authority to decide how to optimize their own objec-
tive functions in view of the decisions of the leader and
other followers. Let x and yi be the control vectors of
the leader and the ith followers, i = 1, 2, · · · ,m, respec-
tively. We also assume that the objective functions of
the leader and ith followers are F (x,y1, · · · ,ym, b) and
fi(x,y1, · · · ,ym, b), i = 1, 2, · · · ,m, respectively, where
b is a vector represents the problem parameters.

In addition, let S be the feasible set of control vector
x of the leader, defined by

G(x, b) ≤ 0 (1)

where G is a vector-valued function of decision vector
x and 0 is a vector with zero components. Then for
each decision x chosen by the leader, the feasible set of
control vector yi of the ith follower should be dependent
on not only x but also y1, · · · ,yi−1,yi+1, · · · ,ym, and
generally represented by the expected constraint

gi(x,y1,y2, · · · ,ym, b) ≤ 0 (2)

where gi are vector valued functions, i = 1, 2, · · · ,m.
Multilevel programming offers a means of studying

decentralized decision systems. Assume that the leader

first chooses his control vector x ∈ S, and the follow-
ers determine their control array (y1,y2, · · · ,ym) after
that. Then a general bilevel programming has the fol-
lowing form,

max
x

F (x,y1,y2, · · · ,ym, b)

subject to:
G(x, b) ≤ 0
where each yi(i = 1, 2, · · · ,m) solves

max
yi

fi(x,y1,y2, · · · ,ym, b)

subject to:
g(x,y1,y2, · · · ,ym, b) ≤ 0.

(3)

Now, assuming that the problem parameters are ran-
dom, and represented by a random vector ξ. Then
the objective function F (x,y, ξ) and fi(x,y, ξ), i =
1, 2, · · · ,m become stochastic. Moreover, the stochas-
tic constraints G(x, ξ) ≤ 0 and gi(x,y, ξ) ≤ 0 do not
define the feasible set of the optimization problem of
the leader and the followers mathematically. Accord-
ing to different decision criteria, we propose two types
of stochastic programming models in the following sub-
sections.

2.1 Expected Value Multilevel Pro-
gramming

With the idea of optimizing the expected value of ob-
jective functions subject to some expected constraints,
we propose the first type of stochastic multilevel pro-
gramming: expected value multilevel programming
(EVMLP).

Let the feasible set of control vector x of the leader
be defined by the expected constraint

E[G(x, ξ)] ≤ 0 (4)

where G is a vector valued function and 0 is a zero vec-
tor. Then for each decision x chosen by the leader,
the feasible set of control vector yi of the ith fol-
lower should be dependent on not only x but also
y1, · · · ,yi−1,yi+1, · · · ,ym, and generally represented
by the expected constraint

E[gi(x,y1,y2, · · · ,ym, ξ)] ≤ 0 (5)

where gi are vector valued functions, i = 1, 2, · · · ,m.
Assume that the leader first chooses his control vec-

tor x, and the followers determine their control array
(y1,y2, · · · ,ym) thereafter. In order to maximize the
expected return of the leader, we have the following
EVMLP,

max
x

E [F (x,y1,y2, · · · ,ym, ξ)]

subject to:
E [G(x, ξ)] ≤ 0
where each yi (i = 1, 2, · · · ,m) solves

max
yi

E [fi(x,y1,y2, · · · ,ym, ξ)]

subject to:
E [gi(x,y1,y2, · · · ,ym, ξ)] ≤ 0.

(6)

A Nash equilibrium of followers is the feasible array
(y∗

1,y
∗
2, · · · ,y∗

m) with respect to x if

E
[
fi(x,y∗

1,y
∗
2, · · · ,y∗

i−1,yi,y
∗
i+1, · · · ,y∗

m, ξ)
]

≤ E [fi(x,y∗
1,y

∗
2, · · · ,y∗

m, ξ)]
(7)

for any feasible (y∗
1,y

∗
2, · · · ,y∗

i−1,yi,y
∗
i+1, · · · ,y∗

m) and
i = 1, 2, · · · ,m.

A Stackelberg-Nash equilibrium to the EVMLP is the
array (x∗,y∗

1,y
∗
2, · · · ,y∗

m) satisfying

E [F (x,y1,y2, · · · ,ym, ξ)]

≤ E [F (x∗,y∗
1,y

∗
2, · · · ,y∗

m, ξ)]
(8)

for any feasible x and the Nash equilibrium
(y1,y2, · · · ,ym) with respect to x.

2.2 Chance-Constrained Multilevel
Programming

Chance-constrained programming, which was initial-
ized by Charnes and Cooper [18], offers a powerful
means for modelling stochastic decision systems. The
essential idea of chance-constrained programming is to
optimize the optimistic return with a given confidence
level subject to some chance constraints. Inspired by
this idea, we propose the second type of stochastic
multilevel programming: chance-constrained multilevel
programming (CCMLP).

By chance constraint we mean that the stochastic
constraints will hold at a confidence level provided as an
appropriate safety margin by the decision-maker. Let
the feasible set of control vector x of the leader be de-
fined by the chance constraint

Pr {G(x, ξ)] ≤ 0} ≥ β0 (9)

where G is a vector valued function, 0 is a zero vector,
and β0 is a confidence level at which it is desired that
the stochastic constraints hold. Then for each decision
x chosen by the leader, the feasible set of control vector
yi of the ith follower should be dependent on not only x
but also y1, · · · ,yi−1,yi+1, · · · ,ym, and generally rep-
resented by the chance constraints

Pr {gi(x,y1,y2, · · · ,ym, ξ) ≤ 0} ≥ βi (10)

where gi are vector valued functions, βi is a confidence
level at which it is desired that the stochastic con-
straints hold, and i = 1, 2, · · · ,m.

Because of the stochastic parameters characterized
by ξ, the objective function is stochastic, which results
that maxx F (x,y, ξ) is meaningless. A natural idea is
to provide a confidence level α0 at which it is desired
that F (x,y, ξ) ≥ F , where the confidence level α0 is
provided as an appropriate safety margin by the leader.
Then the objective of the leader is to maximize F with
a chance constraint as follows,

Pr
{
F (x,y, ξ) ≥ F

}
≥ α0, (11)

where F is referred to as the α0-optimistic return of
F (x,y, ξ). Then for each decision x chosen by the
leader, the objective of the ith follower is to maximize
the αi-optimistic return of fi(x,y, ξ), f i, with a chance
constraint as follows,

Pr
{
fi(x,y, ξ) ≥ F

}
≥ αi, (12)

where αi is a confidence level provided as an appropriate
safety margin by the ith follower.

Assume that the leader first chooses his control vec-
tor x, and the followers determine their control array
(y1,y2, · · · ,ym) thereafter. In order to maximize the
α0-optimistic return of the leader, we have the follow-
ing CCMLP,

max
x

F

subject to:

Pr
{
F (x,y1,y2, · · · ,ym, ξ) ≥ F

}
≥ α0

Pr {G(x, ξ) ≤ 0} ≥ β0

where each yi (i = 1, 2, · · · ,m) solves
max
yi

subject to:

Pr
{
fi(x,y1,y2,· · · ,ym,ξ)≥f i

}
≥ αi

Pr {gi(x,y1,y2,· · · ,ym,ξ)≤0} ≥βi.

(13)

A Nash equilibrium of followers is the feasible array
(y∗

1,y
∗
2, · · · ,y∗

m) with respect to x if

max
{
f i

∣∣Pr
{
fi(x,y∗

1,· · ·,y∗
i−1,yi, · · ·,y∗

m,ξ)≥f i

}
≥αi

}
≤ max

{
f i

∣∣Pr
{
fi(x,y∗

1,y
∗
2,· · · ,y∗

m,ξ) ≥f i

}
≥αi

} (14)

for any feasible (y∗
1,y

∗
2, · · · ,y∗

i−1,yi,y
∗
i+1, · · · ,y∗

m) and
i = 1, 2, · · · ,m.

A Stackelberg-Nash equilibrium to the CCMLP is the
array (x∗,y∗

1,y
∗
2, · · · ,y∗

m) satisfying

max
{
F

∣∣Pr
{
F (x,y1,y2,· · · ,ym,ξ)≥F

}
≥α0

}
≤max

{
F

∣∣Pr
{
F (x∗,y∗

1,y
∗
2,· · · ,y∗

m,ξ)≥F
}
≥α0

} (15)

for any feasible x and the Nash equilibrium
(y1,y2, · · · ,ym) with respect to x.

3 Hybrid Intelligent Algorithm
for Stackelberg-Nash Equilib-
rium

It is known that multilevel programming, even in the
simplest case, is NP-hard [10]. Thus, successful im-
plementations of multilevel models rely largely on the
development of efficient algorithms. In the past two
decades, many intriguing numerical algorithms have
been developed. These algorithms may fall into four
categories:

• vertex enumeration approach, which aims to seek
a comprising vertex by simplex algorithm based on
adjusting the control variables [13][17];

• transformation approach, which transforms the
lower level problems into constraints for the higher
level by use of Karush-Kuhn-Tucker conditions or
penalty functions [3][12][21][23].

• heuristic approaches like gradient techniques
[20][22][29][55], and branch and bound method
[6][7][21] [23][25].

• intelligent algorithms like genetic algorithm
[32][52], and simulated annealing [60], which are
especially suited for solving NP-hard problems like
the multilevel programming problems.

As an extension of multilevel/stochastic program-
ming, stochastic multilevel programming will further
complicate ordinary multilevel programming. Corre-
spondingly, resolution strategies will in many cases re-
quire some approximate methods for solving stochastic
multilevel programming models. In the following sub-
sections, we take the EVMLP as an example to discuss
the numerical solution methods.

3.1 Uncertain function approximation

By uncertain functions we mean the functions with un-
certain parameters. The uncertain functions in stochas-
tic multilevel programming (6) and (13) may fall into
three types. Due tho the complexity, we design stochas-
tic simulations for computing the uncertain functions.

The first type of uncertain function is

U1 : (x,y)→ E [F (x,y, ξ)] . (16)

In order to compute it, we design a stochastic simulation
as follows,

Step 1. Set U1 = 0

Step 2. Generate ω from Ω according to the probabil-
ity measure Pr.

Step 3. Compute the function value F (x,y,ω) and
denote it by c.

Step 4. U1 ← U1 + c.

Step 5. Repeat the second to fourth step for M times,
where M is a sufficiently large number.

Step 6. return U1 ← U1/M

The second type of uncertain function is

U2 : (x,y)→ max
{
F

∣∣
Pr

{
F (x,y1,y2, · · · ,ym, ξ) ≥ F

}
≥ α

}
.

(17)

A procedure of stochastic simulation is given as follows.

Step 1. Generate ω1,ω2, · · · ,ωM from Ω according to
the probability measure Pr, where M is a suffi-
ciently large number.

Step 2. For each ωk, compute the function value
F (x,y,ωk) and denote it by ck.

Step 3. Set M ′ as the integer part of αM

Step 4. Return the M ′-th least element in
{c1, c2, · · · , cM}.

The third type of uncertain function is

U3 : (x,y)→ Pr
{
F (x,y1,y2, · · · ,ym, ξ) ≥ F

}
. (18)

We also design a stochastic simulation as follows.

Step 1. Set M ′ = 0

Step 2. Generate ω from Ω according to the probabil-
ity measure Pr.

Step 3. Compute the function value F (x,y,ω) and
denote it by c.

Step 4. If c < F , set M ′ →M ′ + 1.

Step 5. Repeat the second to fourth step for M times,
where M is a sufficiently large number.

Step 6. return M ′/M

Although stochastic simulations are able to compute
the uncertain functions, they are a time-consuming pro-
cess. In order to speed up the solution process, we need
relatively simple functions to approximate the uncer-
tain functions. Multilayer feedforward NN, which was
initially designed by Minsky and Papert [49], is essen-
tially a nonlinear mapping from the input space to the
output space. It has the high speed of operation af-
ter they are trained. It has been shown that the mul-
tilayer feedforward NNs with an arbitrary number of
hidden neurons are universal approximators for contin-
uous functions (Cybenko [11], Hornik et al [27]). For
our purpose, multilayer feedforward NNs are used to
approximate uncertain functions, and then are substi-
tuted for the work of simulation in the solution process.
For detailed discussion on uncertain function approxi-
mation, the reader may consult Chapter 3 in the book
[33] by Liu.

In order to train NNs to approximate uncertain func-
tions, we should first determine a region Θ on which
to approximate the uncertain function U(x,y). The
region Θ may be a bit too large so that it has sim-
ple forms like multi-dimensional hypercube. Then the
computer can easily sample points (x,y) from the hy-
percube, where the vector y is not necessarily the Nash
equilibrium of the followers with respect to x. In or-
der to get a set of input-output data, we designed a
computing procedure as follows.

Step 1. Set k = 1.

Step 1. Generate a random point (xk,yk) from the
hypercube Θ.

Step 2. Compute the function value by stochastic sim-
ulation and denote it by zk.

Step 7. Repeat Step the first to sixth step for N times.

Step 7. Return the set of input-output data{
(x(k),y(k), z(k))

∣∣ k = 1, 2, · · · , N
}
.

Now we hope to train a feedforward NN to approxi-
mate the function U(x,y). Given the number of neu-
rons and architecture, then the network weights may
be arranged into a vector w. Thus the output of map-
ping implemented by the NN may be characterized by
U(x,y,w). A training process is to minimize the error
function

Err(w) =
1
2

N∑
k=1

|U(x(k),y(k),w)− z(k)|2 (19)

so as to find a weight vector w that provides the best
possible approximation of U(x,y). Sometimes, we are
interested in the average error defined as

Err(w) =
1
N

N∑
k=1

|U(x(k),y(k),w)− z(k)|. (20)

Backpropagation algorithm is the original learning al-
gorithm for multilayer feedforward NN. It is essentially
a gradient descent minimization method. Here we use
the backpropagation algorithm for the NN with one hid-
den layer. In order to speed up the learning process, we
use an improved error function

Ek = 1
2

[
λ(z(k) − U(x(k),y(k),w))2

+(1− λ)Φ(z(k) − U(x(k),y(k),w))2
] (21)

where Φ(x) = ln(cos(βx))/β, λ = exp(−µ/E2) is an
adaptive parameter, µ and β are constant numbers be-
tween 0 and 1, for example, µ = 1, β = 4/3.

Step 1. Initialize w, and set µ = 1, β = 4/3, α = 0.05,
η = 0.01, E0 = 0.05, λ = 1, and k = 0.

Step 2. k ← k + 1.

Step 3. Adjust the weights w.

Step 4. Calculate the error Ek

Step 5. If k < N , go to the second step.

Step 6. Set E =
∑N

k=1 Ek.

Step 7. If E > E0, then set k = 0, λ = exp(−µ/E2)
and go to the third step.

Step 8. End.

For detailed exposition to backpropagation algo-
rithm, the reader may consult the books [58].

3.2 Computing Nash equilibrium

Define symbols

y−i = (y1,y2, · · · ,yi−1,yi+1, · · · ,ym), i = 1, 2, · · · ,m.

For any decision x revealed by the leader, if the ith fol-
lower knows the strategies y−i of other followers, then
the optimal reaction of the ith follower is represented
by a mapping yi = ri(y−i), which should solve the
subproblem

max
yi

E [fi(x,y1,y2, · · · ,ym, ξ)]

subject to:
E [gi(x,y1,y2, · · · ,ym, ξ)] ≤ 0.

(22)

In order to search for the Stackelberg-Nash equilib-
rium of an EVMLP, we should first compute the Nash
equilibrium with respect to any decision revealed by
the leader. It is clear that the Nash equilibrium of the
m followers will be the solution (y1,y2, · · · ,ym) of the
system of equations

yi = ri(y−i), i = 1, 2, · · · ,m. (23)

In other words, we should find a fixed point of the
vector-valued function (r1, r2, · · · , rm). In order to solve
the system of equations (23), we should design some effi-
cient algorithms. The argument breaks down into three
cases.

Case I. If we have explicit expressions of all func-
tions ri, i = 1, 2, · · · ,m, then we might get an analytic
solution to the system (23). Unfortunately, it is almost
impossible to do this in practice.

Case II. In many cases, no analytic solution of (23)
can be obtained. Thus the system of equations (23)
might be solved by some iterative method that gener-
ates a sequence of points y(k) = (y(k)

1 ,y
(k)
2 , · · · ,y(k)

m),
k = 0, 1, 2, · · · via the iteration formula

y
(k+1)
i = ri(y

(k)
−i), i = 1, 2, · · · ,m (24)

where y
(k)
−i = (y(k)

1 , · · · ,y(k)
i−1,y

(k)
i+1, · · · ,y

(k)
m). When we

solve some given problem on a computer, we might em-
ploy the iterative method. The procedure of the itera-
tive method is given as follows.

Step 1. For a given control vector x, initialize a feasi-
ble vector y = (y1,y2, · · · ,ym).

Step 2. Calculate y′
i = ri(y−i).

Step 3. Calculate
∑m

i=1 ‖y′
i − yi‖.

Step 4. y ← y′.

Step 5. Repeat the second to fourth step until∑m
i=1 ‖y′

i−yi‖ ≤ ε where ε is predetermined small
number.

Step 6. Return the vector y = (y1,y2, · · · ,ym) as the
Nash equilibrium.

However, generally speaking, it is not easy to ver-
ify the conditions on the convergence of the iterative
method for practical problems. If we indeed find a so-
lution, then the problem is solved. Otherwise, we have
to try other methods.

Case III. If the iterative method fails to find a fixed
point, we may do it by solving the following minimiza-
tion problem,

minR(y1,y2, · · · ,ym) =
m∑

i=1

‖yi − ri(y−i)‖

subject to:
E [gi(x,y1,y2, · · · ,ym, ξ)] ≤ 0
i = 1, 2, · · · ,m.

(25)

If an array (y∗
1,y

∗
2, · · · ,y∗

m) satisfies that

R(y∗
1,y

∗
2, · · · ,y∗

m) = 0, (26)

then y∗
i = ri(y∗

−i) for i = 1, 2, · · · ,m, and
(y∗

1,y
∗
2, · · · ,y∗

m) must be a solution of (23). In a nu-
merical solution process, if an array (y∗

1,y
∗
2, · · · ,y∗

m)
satisfies that

R(y∗
1,y

∗
2, · · · ,y∗

m) ≤ ε, (27)

where ε is a small positive number, we can also regard
it as a solution of (23). That is, if the minimizing solu-
tion (y∗

1,y
∗
2, · · · ,y∗

m) of the minimization problem (25)
is such that equation (26) or inequality (27) hold, then
(y∗

1,y
∗
2, · · · ,y∗

m) is a solution of (23). Otherwise, the
system of equations (23) might be considered inconsis-
tent. In other words, there is no Nash equilibrium of
followers in the given bilevel programming.

Now let us take attention to the optimization prob-
lem (25). On the one hand, the objective function
m∑

i=1

‖yi − ri(y−i)‖ involves m mappings ri(y−i), i =

1, 2, · · · ,m, which we cannot expect to have per-
fect properties such that the objective function have
good mathematical properties. On the other hand,
the feasible set defined by the system of constraints
E [gi(x,y1,y2, · · · ,ym, ξ)] ≤ 0, i = 1, 2, · · · ,m may
not be convex. For solve model (25), we have to em-
ploy some algorithms, which does not require specific
mathematical analysis, but can provide good solutions
of complex optimization problems.

GA is a stochastic search and optimization proce-
dure motivated by natural principles and selection. GA
starts from a population of candidate solutions rather
than a single one, which increases the probability of
finding a global optimal solution. Then GA improves
the population step by step by biological evolutionary
processes such as crossover and mutation, in which the
search uses probabilistic transition rules, and can be
guided towards regions of the search space with likely
improvement, thus increasing the probability of find-
ing a global optimal solution. In brief, the advantage
of GAs is just able to obtain the global optimal solu-
tion fairly. In addition, GAs do not require the specific
mathematical analysis of optimization problems, thus
can be easily used to solve complex decision systems.
Herein, we use genetic algorithms to search for the Nash
equilibrium. For detailed exposition of GAs, interested
readers may consult books [24][26][48].

For the optimization problem (23), each subproblem
of the followers is a parametric optimization which may
be solved by existing means of mathematical program-
ming when the parameters are given. Since they are
problem dependent, we do not discuss them here. Given
a control vector x, in order to solve the optimization
problem (23) for the Nash equilibrium of the followers,
we give the following GA procedure.

Step 0. Input a feasible control vector x.

Step 1. generate pop size chromosomes y(j), j =
1, 2, · · · , pop size at random from the feasible set.

Step 2. Compute the system of equations ri(y−i), i =
1, 2, · · · ,m for each chromosome y(j), and then

the objective values
m∑

i=1

‖yi − ri(y−i)‖, j =

1, 2, · · · , pop size.

Step 3. Compute the fitness of each chromosome ac-
cording to the objective values.

Step 4. Select the chromosomes by spinning the
roulette wheel.

Step 5. Update the chromosomes by crossover and
mutation operations.

Step 6. Repeat Steps 2–5 until the best chromosome
satisfies inequality (27).

Step 7. Return the Nash equilibrium y(x) =
(y1(x),y2(x), · · · ,ym(x)).

3.3 HIA for Stackelberg-Nash Equilib-
rium

For any feasible control vector x revealed by the
leader, it is reasonable for us to suppose that there
always exists a Nash equilibrium with respect to it.
Denote the Nash equilibrium with respect to x by
(y1(x),y2(x), · · · ,ym(x)), then the EVMLP (6) can be
simplified as follows,

max
x

E [F (x,y1(x),y2(x), · · · ,ym(x), ξ)]

subject to:
E [G(x, ξ)] ≤ 0.

(28)

The uncertain objective function
E [F (x,y1(x),y2(x), · · · ,ym(x), ξ)] involves not
only uncertain parameters, but also a complex map-
ping x → (y1(x),y2(x), · · · ,ym(x)), which makes
the optimization problem difficult to solve. There-
fore, GA is a good choice for solving such model for
the Stackelberg-Nash equilibrium, although it is a
relatively slow way.

Now we integrate stochastic simulations, NNs, and
GAs to produce an HIA for solving general EVMLPs.
In the HIA, input-output data of uncertain functions
are first generated by stochastic simulation. Then NNs

are trained on these sample sets to approximate uncer-
tain functions. After that, the trained NNs, and the
iterative method (or GA) for Nash equilibrium are em-
bedded into a GA so as to search for Stakelberg-Nash
equilibrium efficiently. The procedure of the HIA is
given as follows.

Step 1. Generate input-output data of uncertain func-
tions.

Step 2. Train NNs by backpropagation algorithm.

Step 3. Initialize pop size chromosomes x(i), i =
1, 2, · · · , pop size randomly.

Step 4. Compute the Nash equilibrium with re-
spect to each chromosome x(i) by Algo-
rithm 3 (or 4), and then the objective values
E

[
F (x(i),y1(x(i)),y2(x(i)), · · · ,ym(x(i)))

]
via

the trained NNs, i = 1, 2, · · · , pop size.

Step 5. Compute the fitness of each chromosome ac-
cording to the objective values.

Step 6. Select the chromosomes by spinning the
roulette wheel.

Step 7. Update the chromosomes by crossover and
mutation operations.

Step 8. Repeat Steps 4–7 for a given number of cycles.

Step 9. Return the best chromosome as the optimal
solution.

4 Numerical Examples

The computer code for the HIA to general EVMLPs
with multiple followers has been written in C language.
In order to illustrate its effectiveness, we provide two
numerical examples performed on a personal computer.

Example. We consider a stochastic decentralized de-
cision making problem in which there is one leader
and three followers. Assume the control vector is
x = (x1, x2), and the control vectors of the three follow-
ers are yi = (yi1, yi2), i = 1, 2, 3. Its EVMLP is given

as follows.

max
x1,x2

E
[
(x1 + y11 + y21 + y31 + ξ1)2

+(x2 + y12 + y22 + y32 + ξ2)2
]

subject to:
x1 + x2 ≤ 10, x1 ≥ 0, x2 ≥ 0

where yi = (yi1, yi2) (i = 1, 2, 3) solve
max

y11,y12
E

[√
x2

1 + y2
11 + 2y2

12 + η2
1

]
subject to:

y11 + 2y12 ≤ x2, y11 ≥ 0, y12 ≥ 0
max

y21,y22
E

[√
x2

1 + y2
21 + 2y2

22 + η2
2

]
subject to:

2y21 + 3y22 ≤ x2, y21 ≥ 0, y22 ≥ 0
max

y31,y32
E

[√
x2

1 + y2
31 + 2y2

32 + η2
3

]
subject to:

3y31 + 4y32 ≤ x2, y31 ≥ 0, y32 ≥ 0,

.

The stochastic parameters in the above model are given
as follows:

{
ξ1 ∼ N (3, 1)

ξ2 ∼ N (4, 1)
and


η1 ∼ U(0, 1)

η2 ∼ U(1, 2)

η3 ∼ U(2, 3).

In order to solve this problem, we generate input-
output data for the uncertain functions

U0 : (x,y1,y2,y3)→ E
[
(x1 + y11 + y21 + y31 + ξ1)2

+(x2 + y12 + y22 + y32 + ξ2)2
]

U1 : (x,y1)→ E
[√

x2
1 + y2

11 + 2y2
12 + η2

1

]
U2 : (x,y2)→ E

[√
x2

1 + y2
21 + 2y2

22 + η2
2

]
U3 : (x,y3)→ E

[√
x2

1 + y2
31 + 2y2

32 + η2
3

]
.

by stochastic simulation. Then we train four NNs to
approximate the uncertain functions Ui, i = 0, 1, 2, 3,
respectively. Table 1 gives the number of input-output
data, input, hidden, and output neurons of the four
NNs, and the error defined by (19). In order to fur-
ther illustrate the accuracy of the trained NNs, three
types of samples are used for testing. The first is to
select 1000 input-output data from the train set ran-
domly. The second is to sample 1000 new input-output
data from the predetermined domain. Another 1000
input-output data is generated by sampling 1000 fea-
sible control vector, computing out their correspond-
ing Nash equilibrium, and then the function values by
stochastic simulation. From the comparison results of
the average errors of the three type of samples in Table
2, we can see that the maximum average error defined
by (20) is less than 2.8%. So the NNs are good approx-
imations of the four uncertain functions.

uncertain input-output input hidden output sum squred
functions data neurons neurons neurons error

U0 3000 8 10 1 2100
U1 3000 4 7 1 7.54
U2 3000 4 7 1 2.16
U3 3000 4 7 1 1.96

Table 1: Parameters in the four NNs of example 1

uncertain number average average average
functions of samples error 1 (%) error 2 (%) error 3 (%)

U0 1000 0.1855 0.3735 2.4455
U1 1000 0.9681 1.8205 1.3860
U2 1000 0.5692 1.1595 1.7615
U3 1000 0.3858 0.7639 2.7921

Table 2: Comparison errors of three type of samples of example 1

In the GA procedure for the Stackelberg-Nash equi-
librium, there are some parameters such as the popu-
lation size (pop size), the probability of crossover (Pc),
the probability of mutation (Pm). In Table 3, we com-
pare solutions when different parameters are taken with
the same generations as a stopping rule. It appears that
all the optimal solution and the optimum differ little
from each other. In order to account for it, we present
a parameter, called percent error, i.e. (actual value -
optimal value)/ optimal value × 100%, where the op-
timal value is the minimal one of all the six maximum
obtained above. The last column named by “error” in
Table 3 is just this parameter. It follows from Table 2
that the percent error does not exceed 0.2% when dif-
ferent parameters are selected, which implies that the
HIA is robust to the parameter settings and effective to
solve model (6).

According to the computing result in Table 3, we
can see that x1 is very close to 0, and that x2 is very
close to 10. A direct computation of the control vector
(x1, x2) = (0, 10) shows that the optimal return of the
leader is 652.77, the Nash equilibrium of the followers
is

(y∗
1,y

∗
2,y

∗
3) = (9.9999, 0, 4.9999, 0, 3.3333, 0),

and the optimal return of the three followers are
9.9876, 5.5016, and 4.1140, respectively.

5 Concluding Remarks

In this paper, two classes of stochastic multilevel pro-
gramming models were first proposed for dealing with
decentralized decision making problem in stochastic en-
vironment. In order to solve general the proposed
models for the Stackelberg-Nash equilibrium, an HIA
was designed by integrating stochastic simulation, NNs,
GA, and iterative method. One numerical example
showed that the HIA is robust and effective.

Acknowledgments

This work was supported by National Natural Science
Foundation of China Grant No.69804006, and Sino-
French Joint Laboratory for Research in Computer Sci-
ence, Control and Applied Mathematics (LIAMA).

References

[1] M.A. Amouzegar, K. Moshirvaziri, Determining
optimal pollution control policies: An application
of bilevel programming, European Journal of Op-
erational Research, 119(1999), 100–120.

[2] G. Anandalingam, A mathematical programming
model of decentralized multilevel system, Jour-
nal of the Operational Research Society, 39(1988),
1021–1033.

[3] J.F. Bard, and J.E. Falk, An explicit solution to
the multi-level programming problem, Computer
& Operations Research, 9(1982), 77–100.

[4] J.F. Bard, An algorithm for solving general bilevel
programming program, Mathematics of Operations
research, 8(1983), 260-272.

[5] J.F. Bard, An investigation of the linear three level
programming problem, IEEE Transactions on Sys-
tems, Man, Cybernetics, SMC-14(1984), 711–717.

[6] J.F. Bard, Convex two-level optimization, Mathe-
matical Programming, 40(1988), 15–27.

[7] J.F. Bard, and J.T. Moore, A branch and bound
algorithm for the bilevel programming problem,
SIAM J. Sci. Statist. Coput., 11(1990), 281–292.

[8] J.F. Bard, J. Plummer, and J.C. Sourie, A bilevel
programming approach to determining tax credits
for biofuel production, European Journal of Oper-
ational Research, 120(2000), 30–46.

pop size Pc Pm gen optimal solution return error(%)
30 0.3 0.1 400 (0.0009, 9.9982) 652.25 0.10
30 0.3 0.2 400 (0.0003, 9.9981) 652.65 0.18
30 0.2 0.1 400 (0.0003, 9.9999) 652.75 0.20
50 0.3 0.2 400 (0.0002, 9.9997) 652.75 0.20
50 0.3 0.1 400 (0.0010, 9.9989) 652.70 0.19
50 0.2 0.1 400 (0.0212, 9.9787) 651.42 0.00

Table 3: Comparison solutions of example 1

[9] O. Ben-Ayed, D.E. Boyce, and C.E. Blair, A
general bilevel programming formulation of the
network design problem, Transportation Research,
B22(1988), 259–265.

[10] O. Ben-Ayed, and C.E. Blair, Computational dif-
ficulties of bilevel linear programming, Operations
Research, 38(1990), 556–560.

[11] G. Cybenko, Approximations by superpositions of
a sigmoidal function, Mathematics of Control, Sig-
nals and Systems, 2(1989), 183–192.

[12] W.F. Bialas, and M.H. Karwan, On two-level opti-
mization, IEEE Trans. Control, AC-27(1982), 211–
214.

[13] W.F. Bialas, and M.H. Karwan, Two-level linear
programming, Management Sci., 30(1984), 1004–
1020.

[14] J. Bracken and J.M. McGill, Mathematical pro-
grams with optimization problems in the con-
straints, Operations Research, 21(1973), 37–44.

[15] J. Bracken and J.M. McGill, A method for solving
Mathematical programs with nonlinear problems
in the constraints, Operations Research, 22(1974),
1097–1101.

[16] W. Candler, W. Fortuny-Amat, and B. McCarl,
The potential role of multi-level programming in
agricultural economics, American Journal of Agri-
cultural Economics, 63(1981), 521–531.

[17] W. Candler, and R. Townaley, A linear two-level
programming problem, Computer and Operations
Research, 9(1982), 59–76.

[18] Charnes A. and Cooper W.W., Chance-
constrained programming, Management Science,
Vol.6 (1959), 73–79.

[19] P.A. Clark and A. Westerberg, Bilevel program-
ming for chemical process design—I. Fundamentals
and algorithms, Computer and Chemical Engineer-
ing, 14(1990), 87–97.

[20] A.H. DeSilva, and G.P. McCormick, Implicitly de-
fined optimization problems, Annals Operations
Research, 34(1992), 107–124.

[21] T.A. Edmunds, and J.F. Bard, Algorithms for
nonlinear bilevel mathematical programming pro-
grams, IEEE Transactions on Systems, Man, and
Cebernetics, 21(1991), 97–113.

[22] J.E. Falk, and J. Liu, On bilevel programming,
Part I: general nonlinear cases, Mathematic Pro-
gramming, 70(1995) 47–72.

[23] J. Fortuny-Amat, and B. McCarl, A representa-
tion and economic interpretation of a two-level pro-
gramming problem, Journal of the Operational Re-
search Society, 32(1981), 783–792.

[24] D.E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-
Wesley, MA, 1989.

[25] P. Hansen, B. Jaumard, and G. Savard, New
branch and bound rules for the linear bilevel pro-
gramming problem, SIAM J. Sci. Statist. Coput.,
13(1992), 1194–1217.

[26] J.H. Holland, Adaptation in Natural and Artificial
Systems, University of Michigan Press, Ann Arbor,
1975.

[27] K. Hornik, M. Stinchcombe, H. White, Multilayer
feedforward networks are universal approximators,
Neural Networks, 2(1989), 359–366.

[28] J.J. Júdice, and A.M. Faustino, A sequential LCP
method for bilevel linear programming, Annals Op-
erations Research, 34(1992), 89–106.

[29] C.K. Kolstad, and L.S. Lasdon, Derivative eval-
uation and computational experience with large
bilevel mathematical programs, Journal of Opti-
mization Theory and Applications, 65(1990), 485–
499.

[30] Y.J. Lai, Hierachical optimization: A satisfactory
solution, Fuzzy Sets and Systems, 77(1996), 321–
335.

[31] E.S. Lee, and H.S. Shih, Fuzzy and Multi-level De-
cision Making, Springer-Verlag, London, 2001.

[32] B. Liu, Stackelberg-Nash equilibrium for multi-
level programming with multiple follower using ge-
netic algorithm, Comput. Math. Appl., 36(1998),
79–89.

[33] B. Liu, Theory and Practice of Uncertain Program-
ming, Physica-Verlag, Heidelberg, 2002.

[34] B. Liu, Dependent-chance goal programming and
its genetic algorithm based approach, Mathemati-
cal and Computer Modelling, 24(1996), 43–52.

[35] B. Liu, Dependent-chance programming: A class
of stochastic programming, Computers & Mathe-
matics with Applications, 34(1997), 89–104.

[36] B. Liu, and K. Iwamura, Modelling stochastic de-
cision systems using dependent-chance program-
ming, European Journal of Operational Research,
101(1997), 193–203.

[37] B. Liu, and K. Iwamura, Chance constrained pro-
gramming with fuzzy parameters, Fuzzy Sets and
Systems, 94(1998), 227–237.

[38] B. Liu, Outline of uncertain programming, Pro-
ceedings of the Third International Symposium on
Operations Research and Applications, p. 480–489,
Kunming, China, August 19–22, 1998.

[39] B. Liu, Uncertain programming: Modelling, evolu-
tionary computation and applications, Proceedings
of Fourth Joint Conference on Information Sci-
ences, Vol. 3, p. 433–437, North Carolina, October
23–28, 1998,

[40] B. Liu, Minimax chance constrained programming
models for fuzzy decision systems, Information
Sciences, 112(1998), 25–38.

[41] B. Liu, and R. Zhao, Stochastic Programming and
Fuzzy Programming, Tsinghua University Press,
Beijing, 1998.

[42] B. Liu, Dependent-chance programming with fuzzy
decisions, IEEE Transactions on Fuzzy Systems,
7(1999), 354–360.

[43] B. Liu, and A.O. Esogbue, Decision Criteria and
Optimal Inventory Processes, Kluwer Academic
Publishers, Boston, 1999.

[44] B. Liu, Uncertain Programming, Wiley, New York,
1999.

[45] B. Liu, Uncertain programming: Optimization
theory in uncertain environments, in Proceedings of
the Ninth IEEE International Conference on Fuzzy
Systems, p. 941–944, San Antonio, Texas, USA,
May 7–10, 2000.

[46] B. Liu, Dependent-chance programming in fuzzy
environments, Fuzzy Sets and Systems, 109(2000),
97–106.

[47] B. Liu, Uncertain programming: A unifying opti-
mization theory in various uncertain environments,
Applied Mathematics and Computation, 120(2001),
227–234.

[48] Z. Michalewicz, Genetic Algorithms + Data Struc-
tures = Evolution Programs, 3rd ed., Springer-
Verlag, Berlin, 1996.

[49] M. Minsky, and S. Papert, Perceptrons, Mit Press,
Cambridge, MA, 1969.

[50] M. Patriksson, L. Wynter, Stochastic mathematicl
programs with equilibrium constraints, Operations
research letters, 25(1999), 159–167.

[51] M. Sakawa, I. Nishizaki, and Y. Umura, Interactive
fuzzy programming for multi-level linear program-
ming problems with fuzzy parameters, Fuzzy Sets
and Systems, 109(2000), 3–19.

[52] K.H. Sahin, and A.R. Ciric, A dual temperature
simulated annealing approach for solving bilevel
programming problems, Computers and Chemical
Engineering, 23(1998) 11–25.

[53] G. Savard, and J. Gauvin, The steepest descent di-
rection for nonlinear bilevel programming problem,
Operations Research Letters, 15(1994), 265–272.

[54] H.S. Shih, Y.J. Lai, and E.S. Lee, Fuzzy approach
for multi-level programming problems, Computer
& Operations Research, 23(1996), 73–91.

[55] K. Shimizu, and E. Aiyoshi, A new computational
method for Stackelberg and min-max problems by
use a penalty method, IEEE Transactions on Au-
tomatic Control, AC-26(1981), 460–466.

[56] S. Suh, and T. Kim, Solving nonlinear bilevel
programming models of the equilibrium network
desing problem: A comparative review, Annals
Operations Research, 34(1992), 203–218.

[57] U.P. Wen, and W. Bialas, The hybrid algorithm
for solving three-level linear programming prob-
lem, Computer and Operations Research, 13(1986),
367–377.

[58] H. White, et al., Neural Networks Approximation
and Learning Theory, Blackwell Publishers, USA,
1992.

[59] H. Yang, and M.G.H. Bell, Transport bilevel pro-
gramming problems: recent methodological ad-
vances, Transportation Research, Part B: 35(2001),
1-4.

[60] Y. Yin, Genetic-algorithms-based approach for
bilevel programming models, Journal of Trans-
portation Engineering, 126(2000), 115–120.

