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Abstract 
 

In this paper, we study a sea cargo mix problem that 
occurs in the context of container shipment planning and 
revenue analysis in ocean carriers. We describe structure 
and characteristics of the cargo mix problem, and 
formulate as a Multi-Dimension Multiple Knapsack 
Problem (MDMKP). In particular, the MDMKP is an 
optimization model that maximizes the total profit in 
several periods, subject to the limited shipping capacity 
and the limited number of empty containers in the origin 
port, etc. Algorithm is proposed to obtain the near optimal 
solution for the problem. Numerical experiments 
demonstrate the efficiency of the algorithm.  

 
Track area: SCM & e-logistics/ Operations Planning 

&Control. 
Keywords: sea cargo mix, container shipping industry, 

MDMKP. 
 
1. Introduction and Problem Description 
 

In the recent economic environment, it is often the 
case that profits can only be maintained or increased by 
improving efficiency and cutting costs. This is particularly 
proverbial in the shipping industry, where it has been seen 
that the competition is very intensive among container 
carriers, thus alliances and partnerships are resulting for 
cost effective services in recent years. In this scenario, 
effective planning methods are important not only for 
strategic but also operating tasks, covering their entire 
transportation business (see [2][4][13][18][19]). Sea 
cargo mix planning is an important part of the operations 
of container shipping lines. This paper addresses the 
problem of sea cargo mix planning for containerized 
cargoes, to achieve the most profitable, time definite and 
cost-effective services in a competitive ocean container 

shipping market.  
Shipping industry has started utilizing internet B2B 

exchanges, a marketplace where many buyer and sellers 
post buy and sell bids to make trades at dynamically 
determined market prices. Both shipping lines and 
shippers are moving towards e-logistics in all dealings. 
All documents can be received electronically, captured 
and processed directly into the e-logistics system 
seamlessly. Online booking request is made available 24 
hours a day. Within the e-booking, shipper has to select 
the cargo from the commodity list provided, specify the 
size and type of container, and enter port of receipt or 
delivery on the latest departure and arrival date. For 
examples, Maersk-Sealand, Hanjin, APL and Hyundai are 
among the carriers offering such service (see their 
websites for details). Maersk-Sealand uses digital 
certificate to prove one’s identity and enable access to 
protected area to make booking online faster and safer. 
The shipper suggests the most appropriate vessel sailing 
from global schedule system displayed on screen and 
finally save all information. The shipper’s request will 
then be transmitted to the local Maersk-Sealand office, 
where confirmation of requirement together with the 
booking reference number will be sent back to the shipper.  

For many containerized cargo carriers, the majority of 
their bookings are under long-term contracts with shippers. 
Such long-term agreements help carriers support requests 
for the large amounts of capital required to run their 
businesses. These long-term contracts are typically for 
one to three years. For some carriers, annual contracts all 
date to the same time of year and may cause a flurry of 
activity to re-negotiate terms and solidify the next year’s 
business. Regardless of timing, these contracts form a 
significant part of the revenue stream for a container 
carrier and negotiating the right prices and terms can be a 
major contributor to overall profitability. In practice, 
booking requests are often made less than 14 days before 
the freight becomes available for shipment, in which case 

 



the carrier may delay moving the freight if insufficient 
capacity is available. For example, the shipper may 
request a booking on a voyage that departs 9 days into the 
future, but if that voyage is already too fully booked, then 
the carrier may offer to transport the freight on a voyage 
that departs a week later, thus 16 days into the future. The 
shipper may then accept the booking offer, or decline the 
booking offer and request a booking with another carrier. 
Also, often shippers’ cancel previously made bookings. It 
also happens that freight scheduled to depart on a voyage 
does not arrive at the port in time for the voyage. 
Approximately 30% of booked freight ends up not 
transported as originally booked. The booking control 
decision maker at the carrier has to decide, whenever a 
shipper requests a booking, what booking to offer the 
shipper. For example, the carrier may offer the shipper a 
booking on the voyage 9 days into the future, or on a 
voyage scheduled to depart a week later. The decision 
maker should take into account the revenue specified in 
the contract with the shipper, the probability of the shipper 
declining the booking offer, as well as uncertain future 
booking requests, cancellations and no-shows.  

In practical situation, less-than-container-load (LCL) 
cargo orders come through telephone, email or website 
from established customers (these usually have their own 
shipping department), freight forwarders who act for 
customers or some new customers. Full-container-load 
(FCL) cargo orders are usually from big firms such as 
many electronics manufacturing companies. These big 
customers usually let the carrier know approximately the 
number of containers they will ship over the next three or 
four weeks (need to check if this practice still is in place). 
Agreement is loose and not legally binding.  

The carrier will have the following priorities: 
1) High paying FCL cargo (e.g., electronics) 
2) Medium paying  
3) Low paying (e.g., gypsum board) 
If times are good and demand exceeds container space, 

the shipping company wills rollover those low paying 
cargo (i.e. not ship on schedule but postpone shipment to a 
later date).  Under the contract, customers cannot sue the 
shipping company. If times are bad, the shipping company 
will look for low-paying cargo to fill the vessel rather than 
ship empties. 

FCL cargo usually has no weight/volume 
specification because customers always pack to the fullest. 
Because maximum weight of 20-foot and 40-foot 
container are 18 MT and 40MT, respectively, so if cargo is 
volume cargo, you can pick in something like 40 cu 
meters and yet the cargo weighs less 20 tons. For weight 
cargo (e.g., steel), 20 tons is easily reached when the 
container is 1/3 full. You just cannot pack in anymore 
(legal requirement). Most LCL cargo tends to be volume 
cargo and the shipping company prefers that because they 
charge by weight or volume. The shipping company takes 
all orders but those they can’t ship, they will inform the 
customers after the ship sails.  

Sea cargo mix problem arises when a liner operator 
wants to select cargoes in order to maximize his revenue 
for some particular trips. Optimal cargo mix technique 

needs data from the online booking system and container 
tracking system to provide current status and location of 
container inventory as well as details of all costs 
associated with shipments. Historical data is gathered or 
built up over time to permit forecasting of container flows 
and inventory levels. From demands, bookings, available 
capacity and average contributions, it mathematically 
determines an optimal target contribution to determine 
whether to accept or reject a proposed booking, or to 
suggest a surcharge or alternate product or service at a 
higher/lower price. The result would be used to adjust 
contribution calculations to favor certain types of freight 
on certain routes and discourage others.  

Each type of cargo has different volume/ weight 
characteristic, different freight rate and generates different 
revenue. For example, the tradeoff in FCL and LCL cargo 
mix is important operational issue for liner operators. 
Shipping companies offer customers priority, time-bound 
forwarding for LCL and FCL shipments with fast transits, 
reliable schedules and competitive price. A FCL of 
electronics pays higher than a FCL of gypsum board. 
Furthermore, if the inbound vessel is full, and if this is not 
balanced by a full outbound, then there is the need to ship 
empties necessitated by the need to re-position the empties 
for use by the destination port. This too has to be taken 
into account in the optimal revenue analysis. The 
repositioning of empty containers is one of the single 
largest expenses for most container carriers. Regarding 
container demand and supply it minimizes empty 
repositioning costs and maximize vessels utilization and it 
lead to a pro-active pricing mechanism for improved 
revenues and reduced costs. In order to optimally use 
vessels optimally matched where possible according to 
customer requirements to minimize empty repositioning 
costs. This takes into account excess empties and will 
result in optimal utilization of vessels while total 
transportation costs (for both full and empty containers) 
are reduced and trade imbalances will be compensated. 
Many different models have been proposed in the 
literature to obtain an optimal container repositioning 
planning. However, most of them did not consider it with 
transportation of laden containers and revenue 
management (see [1][3][9]).  

In our work, we abstract the FCL and LCL cargo and 
the empty container as different type of cargo. Further 
more, in the model proposed in our paper, we consider 
more detailed information concerned with each type of 
cargo. Such information include the weight, volume, 
shipment price and shipment due date requirement, etc. 

To our knowledge, up until now, there is no any 
description and formulation for the multi-period sea cargo 
mix problem in the literature. Single period sea cargo mix 
problem is proposed by [5] and it is formulated as linear 
programming model by [10], when all cargoes are 
separable for shipment. Literature on related mathematical 
programming models and algorithms see related Sections.  

The rest of the paper is organized as follows. In 
Section 2, the multi-period sea cargo mix problem is 
formulated as the Multi-Dimension Multiple Knapsack 
Problem (MDMKP). Section 3 presents algorithm for the 

 



model. The heuristic algorithm with effective gradient and 
its modified algorithm are given in this section. We 
demonstrate the algorithm with effective gradient by a 
simple example in this section, followed in Section 4 by 
numerical experiments of the algorithm with a wide range 
of problem instances. Section 5 concludes the paper. 
 
2. Mathematical Formulation 
 

There are several technical constraints relative to 
how a ship should be loaded. The obvious constraints are 
that cargo weight and volume should not exceed the ship's 
capacity. The operational objective is to select the loading 
parameters in order to maximize some profit criterion 
subject to the mathematical expression of the 
weight/volume constraints. If the freight rates are known 
and the operator can refuse or delay to carry cargoes, then 
the multi-period sea cargo mix problem can be formulated 
as MDMKP. The objective of the problem is to maximize 
a weighted sum of the quantities transported. The relative 
coefficients for the cargoes might reflect their unit profits. 

In this section, we develop a mathematical model for 
the problem under consideration. For the ease of our 
discussion, we consider that one time period represents 
one day or one week and we use the term t  to represent 
the th time period.  t

In order to present the mathematical formulation of 
the model for a given planning time horizon, we introduce 
some notation: 

 
Index Sets 
T~ set of time periods  },,,,2,1{ Tt LL

J~ set of ports  },,,,2,1{ Jj LL

tK~ set of all cargoes received in period t , i.e., 

=tK~ },,,,2,1{ tKk LL  
 

Parameters 

ktkdjr per volume revenue of cargo  which is received in 

period t  and shipped to port  in period  

k

kj d

ktkdjc per volume cost of cargo k  which is received in 

period t  and shipped to port  in period  kj d

tkh  per volume inventory cost of cargo k  which is    
received in period t  and delayed to carry in next 
period 

kτ  due date of cargo k  

tE  total volume of available empty containers at origin 
port in period  t

tjV  total available volume capacity of shipment to port  
in period t  

j

tjW maximum allowable weight capacity of shipment to 

port  in period t  j

kk jtkv τ volume of cargo  received in period t  ready for 

shipment to port  before its due date 

k

kj kτ  

kk jtkw τ weight of cargo  received in period t  ready for 

shipment to port  before its due date 

k

kj kτ  
 

Decision Variables 

ktkdjx  binary variable, i.e., , if cargo k  is   
received in period  and is ready for shipment to port 

 in period d  before its due date 

1=
ktkdjx

t
kj kτ , 0, otherwise.  

 
 In this paper, we assume that there are one origin port 
and destination ports. All cargoes are received at origin 
port in a certain period of time horizon 

J
T . The shipping 

company decide which cargoes carry in the current period 
and which cargoes are delay to carry in the other period 
within their due date and which cargoes are refused to 
carry in the time horizon T .  

Let tktkdjtkdjtkdj htdcrr
kkk

)( −−−= , ,~Tt∈∀  

,~
tKk ∈  Jjk

~∈ , ,kdt τ≤≤  our multi- period sea 
cargo mix problem can then be formulated as follows: 

(M1): ∑∑∑
= ∈ =

=
T

t Kk td
tkdjtkdjjtk

t

k

kkkk
xrvzMaximize

1 ~

τ

τ      (1) 

subject to 

∑∑
=

≥
∈

∈∀≤
d

t
d

Kk
dtkdjjtk

k
t

kkk
TdExv

1 ~

~

τ

τ                        (2) 

JjTdVxv
d

t

jj
d

Kk
djtkdjjtk

k
k

t

kkk

~,~
1 ~

∈∈∀≤∑∑
=

=
≥

∈
τ

τ          (3) 

JjTdWxw
d

t

jj
d

Kk
djtkdjjtk

k
k

t

kkk

~,~
1 ~

∈∈∀≤∑∑
=

=
≥

∈
τ

τ        (4) 

t
td

tkdj KkTtx
k

k

~,~1 ∈∈∀≤∑
=

τ

                             (5) 

kttkdj dtKkTtx
k

τ≤≤∈∈∀∈ ,~,~}1,0{             (6) 
 The objective function (1) maximizes the total profit 
in the time horizon T . Constraints (2) ensure that the 
demand for empty containers at origin port is less than the 
number of available empty containers at origin port in 
each period. Constraints (3) ensure that the total volume of 
cargoes which will be carried to port  in period  is 
less than the total available volume capacity of shipment 
to port  in period . Constraints (4) ensure that the 
total weight of cargoes which will be carried to port  in 
period  is less than the total available weight capacity 
of shipment to port  in period . Constraints (5) 

j d

j d
j

d
j d

 



impose that each cargo may be carried in a certain period 
before their due date or be refused to carry in the time 
horizon T . Constraints (6) assure that each cargo can be 
either accepted at its total quantity or be turned down. 
 We may notice that the inequality sign in (5) is 
replaced by equality, if all received cargoes have to be 
carried in the time horizon T . In this case, the MDMKP 
(M1) may have not feasible solution, because the total 
available capacity of shipment may be less than the 
amount of demands in the time horizon T . On the other 
hand, MDMKP (M1) always has the optimal solution, 
because it has a trivial feasible solution , for all 0=

ktkdjx

Tt ~∈ , tKk ~∈ { ktd, },,1, t τL∈ + , and its LP 
relaxation optimal value is an upper bound of its optimal 
value. 
 
3. Heuristic Algorithm for MDMKP 
 

The 0-1 or binary integer programming is an integer 
programming whose all decision variables are 0-1 values. 
An important class of binary integer programming 
problems is the Knapsack Problem (KP). The Single 
Knapsack Problem (SKP) is one kind of KP where only 
one knapsack needs to be filled and each item may be 
chosen at most once; If the items should be chosen from 
disjoint classes and exactly one item from each class, we 
get the Multiple-Choice Knapsack Problem (MCKP); The 
Multiple Knapsack Problem (MKP) is also a kind of KP 
where several knapsacks are to be packed simultaneously. 
The more general kind of KP is the Multi-Dimensional 
Knapsack Problem (MDKP), also known as Multi- 
Constrained Knapsack Problem, where there are more 
than one limited resources, i.e. the resources are 
multi-dimensional for the knapsack. And the MDMKP is 
the combination of MDKP and MKP. All Knapsack 
problems belong to the NP-hard family (see [6]), 
therefore it is impossible that polynomial time algorithms 
can be devised for them.  

There are different algorithms for solving variants of 
KPs (see [14][15][16][17][11]). Generally, there are two 
methods of finding their solutions: one is a method for 
finding exact solutions and the other is heuristic. Finding 
exact solutions is NP hard. Using the branch and bound 
with linear programming technique, Kolesar ([9]), Shih 
([20]), Nauss ([12]) and Khan ([7]) presented exact 
algorithms for KP, MDKP, MCKP and MDKP 
respectively. A greedy approach has been proposed by 
Khan et al ([7]), Martello and Toh ([11]) and Toyoda ([21]) 
to find near optimal solutions of KPs.  

 
3.1 Heuristic Algorithm with Effective Gradient 

 
MDMKP (M1) is different with all kinds of KPs 

mentioned in the literature and it needs to develop 
efficient algorithms for it. In this section, we give an 
efficient heuristic algorithm with the effective gradient for 
it. 

Let 
kkkk djjtktkdj Vvv /τ= , 

kkkk djjtktkdj Www /τ= , 
then we can rewritten (M1) as follows 

(M2): ∑∑∑
= ∈ =

=
T

t Kk td
tkdjtkdjjtk

t

k

kkkk
xrvzMaximize

1 ~

τ
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=
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t
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                         (11) 

kttkdj dtKkTtx
k

τ≤≤∈∈∀∈ ,~,~}1,0{         (12) 
When each of the candidate items (i.e. cargoes) 

involves only one limited resource, it is easy to pick up 
more profitable items. When there exists more than one 
limited resource in the candidate items, it is difficult to 
evaluate the amount of limited resources used. Toyoda 
(see [21]) introduced the concept of penalty vector, which 
results in a single index based on the many limited 
resources. Toyoda’s heuristic for MDKP starts with no 
items, and adds one item at a time iteratively as long as the 
solution is feasible. At any iteration, the heuristic picks the 
item which provides the maximum value per unit of 
aggregate resource or the effective gradient among the 
not-yet-picked items.  Computational experiments show 
that this heuristic provides very good near optimal 
solutions to the MDKP using very short computation time, 
and it can be applied to large problem instances, such as 
problems with more than a thousand variables (see [21]). 

In this section, we propose a heuristic algorithm 
HAEG to provide a near-optimal solution to MDMKP 
(M2) by means of concepts such as penalty vector and 
effective gradient in [21]. 

The heuristic algorithm for MDMKP can be 
presented as follows. 
 
Algorithm HAEG 
Step 1: Initialization. 
Step 1.1: Let φ←UK , where  is the set of accepted 

items.  
UK

Step 1.2: Assign all items to , where 

is the set of items not in  and 
UD KKK −=

DK UK

}~,~:{ TtKkkK t ∈∈= . 

Step 1.3: Let , where  is the total 
quantity vector of accepted items shipping to 

)0,0(←dj
UA dj

UA

 



port  in period . j d
Step 1.4: Let the objective value be zero, i.e., 0←z . 
Step 1.5: Let  for ,0←

ktkdjx

},,1,{,~,~
kt ttdKkTt τL+∈∈∈∀ . 

Step 2: Let kDC dKkkK τ≤∃∈← ,:{  

 ,)1,1(),(.. k

kk

dj
Utkdjtkdj Awvts −≤  

     ,  }∑
≥
∈′

′

′

−≤

d
Kk

jktdjtk

k
U

kkkk
vEv

τ

ττ

where  is the set of candidate items. CK
Step 3: Check . If is empty, the procedure 

terminates. Otherwise, proceed to the next step. 
CK CK

Step 4: Let  ,:),{( DC KkdkK ∈=  

                   ,)1,1(),( k

kk

dj
Utkdjtkdj Awv −≤  

                     }∑
≥
∈′

′

′

−≤

d
Kk

jktdjtk

k
U

kkkk
vEv

τ

ττ . 

Compute effective gradients for the items in as 
follows. 

CK

Step 4.1: If  is a zero vector, then we set kdj
UA

kk

kkk

tkdjtkdj

tkdjjtk
kd wv

rv
G

+
← τ2

, for CKdk ∈),(  

Step 4.2: Otherwise, we set 

∑∑

∑ ∑

∈′
′

∈′
′

∈′ ∈′
′′

′′

′′

+

+

←

d
U

kk
d
U

kk

d
U

d
U

kkkkk

Kk
djkttkdj

Kk
djkttkdj

Kk Kk
djktdjkttkdjjtk

kd wwvv

wvrv
G

22 )()(τ

,  

for CKdk ∈),( , where 

}1,:{ =∈′′=
′′ kdjktU

d
U xKkkK . 

Step 5: Find that item whose effective gradient is the 
largest in a period, i.e.,  

k

}),(:max{ Cdkkd KdkGG ∈′′← ′′ . 

Step 6: Accept . Let ,  k }{kKK UU +←

),(
kk

kk
tkdjtkdj

dj
U

dj
U wvAA +← , 

kkk tkdjjtk rvzz τ+← , , }{kKK DD −←

1←
ktkdjx .  Then, goto step 2. 

 We may notice that the solution of HAEG is a 
feasible solution of MDMKP (M2) and the objective 
function value is a lower bound of the optimal solution 
value of it. The numerical experiments in Section 4 show 
that the solution of HAEG is very close to the optimal 
solution of MDMKP (M2). 
 
3.2  A Simple Example 

Let 
kkk tkdjtkdjtkdj rvr =ˆ , =T~ }2,1{ , =J~ }2,1{ ,  

=1
~K }5,4,3,2,1{ , =2

~K }7,6{ ; , for  1=kj
=k 1, 3, 5, 6; 2=kj , for 2, 4, 7; =k 11 =τ , 2=kτ , 

for 72 ≤≤ k ; )32,40(),( 21 =EE ,  

=k )21,13(),( 2212 =VV , ,  )30,39(),( 2111 =VV
=k )25,35(),( 2111 =WW ,  ,  )38,12(),( 2212 =WW

)9,5,13,10(),,,( 2621152113211111 =wwww ,  

)8,12,13(),,( 272214221222 =www ; 

)60,660,340()ˆ,ˆ,ˆ( 151113111111 =rrr ,  

)77,182()ˆ,ˆ( 14121212 =rr ,  

)170,70,506()ˆ,ˆ,ˆ( 262115211321 =rrr ,  

)200,231,70()ˆ,ˆ,ˆ( 272214221222 =rrr . 
 We solve it by the heuristic algorithm with effective 
gradient HAEG given in Section 3.1. the procedure is 
briefly given as follows.  
 Since 

kkkk djjtktkdj Vvv /τ= , 
kkkk djjtktkdj Www /τ= , 

we have 
)1282.0,5641.0,4359.0(),,( 151113111111 =vvv ,  

)8095.0,5238.0,3333.0(),,( 272214221222 =vvv ,   

)1429.0,3714.0,2857.0(),,( 151113111111 =www ,  

)1,0833.1(),( 14121212 =ww ,  

)2105.0,3158.0,3421.0(),,( 272214221222 =www ,  

)8462.0,5385.0(),( 14121212 =vv ,  

)3333.0,1667.0,7333.0(),,( 262115211321 =vvv ,  

)36.0,2.0,52.0(),,( 262115211321 =www . 

Step 1. Let φ←UK , all items be assigned to 

UD KKK −= , , ,  0←z )0,0(←dj
UA

             kttkdj dtKkTtx
k

τ≤≤∈∈∀← ,~,~,0 .  

Step 2. Let kDC dKkkK τ≤∃∈← ,:{  

 ,)1,1(),(.. k

kk

dj
Utkdjtkdj Awvts −≤  

     ,. }∑
≥
∈′

′

′

−≤

d
Kk

jktdjtk

k
U

kkkk
vEv

τ

ττ

Step 3. Since φ≠CK , proceed to the next step. 

Step 4. Since , the effective gradients are 
calculated by formula:  

)0,0(=kdj
UA

kk

k

tkdjtkdj

tkdj
kd wv

r
G

+
=

2ˆ
, for CKdk ∈),( ,  

we have 33.66611 =G , ,  7.99731 =G
04.31351 =G , 33.66632 =G , ,  99.26952 =G

 



75.34662 =G , , ,  98.5841 =G 56.14622 =G
09.38942 =G , . 28.27772 =G

Step 5. The largest effective gradient is . 7.99731 =G
Step 6. Accept item 3. Let , }3{+← UU KK

),( 13111311
1111 wvAA UU +← , 1311rzz +← ,  

}3{−← DD KK , . Then, go to step 2. 11311 ←x
After it is repeated several times,  becomes 

empty and we obtain the final solution:  
CK

1471=z , 114222621152113111111 ===== xxxxx , 

0272212221412121213211511 ====== xxxxxx . 
This solution is the same as the optimal one obtained by 
perfect enumeration. 
 
3.3 Modified Heuristic Algorithm  
 
 In this section, we modify the effective gradient  
which introduced in Section 3.1 to increase accuracy of 
the heuristic algorithm. 

ijG

 
Algorithm MHA 
Step 1: Initialization. 
Step 1.1: Let , ,  0←l 0ˆ ←z ,0ˆ ←

ktkdjx

              kt dtKkTt τ≤≤∈∈∀ ,~,~
.  

Step 1.2: Let φ←UK , where  is the set of accepted 
items.  

UK

Step 1.3: Assign all items to , where 

is the set of items not in  and 
UD KKK −=

DK UK

}~,~:{ TtKkkK t ∈∈= . 

Step 1.4: Let , where  is the total 
quantity vector of accepted items shipping to port 

 in period . 

)0,0(←dj
UA dj

UA

j d
Step 1.5: Let the objective value be zero, i.e., 0←z . 

Step 1.6: Let ,~,0 Ttx
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tKk ∈  
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 where  is the set of candidate items. CK
Step 3: Check . If is empty, goto step 7. 

Otherwise, proceed to the next step. 
CK CK

Step 4: Let ),(,:),{(
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Compute effective gradients for the items in 
as follows. CK
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, for CKdk ∈),( , where 

1,2.1,2,25.0,125.0=α  respectively, for 
8,7,6,5,4=l . 

Step 5: Find that item k whose effective gradient is the 
largest in a period, i.e.,  

}),(:max{ Cdkkd KdkGG ∈′′= ′′ . 

Step 6: Accept . Let ,  k }{kKK UU +←

),(
kk
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tkdjtkdj
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U wvAA +← , 

kkk tkdjjtk rvzz τ+← ,  

}{kKK DD −← , . Then, goto step 2. 1←
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Step 7: If , then , zz ˆ> zz ←ˆ
kk tkdjtkdj xx ←ˆ , 

for },,1,{,~,~
kt ttdKkTt τL+∈∈∈ . 

Step 8: If 8=l , then the procedure terminates. 
Otherwise, let 1+← ll , goto step 1.1. 

 From the steps of the modified heuristic algorithm, 
the solution of MHA is closer to the optimal solution than 
HAEG, because we take the maximum value among 

 



solutions given by nine methods including the method 
used in HAEG. We may easily notice that the computation 
time of MHA is more than four times of HAEG. 
 
4. Numerical Experiments 
 

In this section, we implement the modified heuristic 
algorithm MHA and give comparisons among heuristic 
solutions and optimal solutions or LP optimal solutions 
(as the up bound of optimal solutions). The algorithm has 
been coded in C++ and run under Windows 2000 
Professional using a notebook computer (Pentium IV with 
1794MHz and 256MB in RAM). CPU times were 
obtained through the C++ function clock(). To conduct 
our experiments we used randomly generated instances. 
For simplicity of implementation, we assumed that 
destination port  of each cargo  is decided by:  kj k

jjk = , if jfloor(K/J)j1)-j()floor(K/J k ×<≤× , 

for ; 1,,2,1 −= Jj L

Jjk = , if . J≤<× kj1)-J()floor(K/J
 For each set of parameters J, T and K, we generated 

10 random MDMKP instances. We tested heuristic 
solutions and optimal solutions or LP optimal solutions on 
all 10 instances, and tabulated the average relative gap and 
average computation time. In table 1, the relative gap 
between heuristic solution and optimal solution  is 
computed as  

Og

 

solution optimal ofprofit  total
solution heuristic ofprofit  total-solution optimal ofprofit  total  

100%×  
 

In table 1 and table 2, the relative gap between 
heuristic solution and LP relaxation optimal solution  
is computed as 

Lg

 

solution optimal relaxation LP ofprofit  total
solution heuristic ofprofit  total-solution optimal relaxation LP ofprofit  total  

 
100%×

 
Table 1. Results for small test problems 

Average relative gap (%) 
T J K Number of 

variables 
Number of 
constraints 

Instances 
tested 

Og  Lg  
2 2 37 74 84 10 1.62 2.82 
2 2 57 114 124 10 1.27 2.65 
3 4 27 81 108 10 2.31 3.29 
4 8 23 92 160 10 2.85 9.41 

 
Table 2. Results for Medium Scale problems 

Average CPU 
time (sec) T J K Number of 

variables 
Number of 
constraints 

Instances 
tested 

Average 
relative gap 

 (%) Lg Heuristic LP 
2 2 271 542 552 10 5.79 0.54 5.02 
4 8 800 3200 3268 10 6.18 26.43 1167.53 
4 40 500 2000 2324 10 7.79 46.32 298.79 
5 70 700 3500 4205 10 8.74 110.23 1982.67 
5 9 900 4500 4595 10 7.65 41.58 2139.04 
5 30 990 4950 5255 10 8.41 160.23 2531.45 

 
Table 3. Computation Time for Large Scale Problems 

T J K Number of 
variables 

Number of 
constraints 

Instances 
tested 

Average CPU 
time (sec) 

5 70 1200 6000 6705 10 367.02 
3 4 4000 12000 12027 10 273.46 
6 7 2500 15000 15090 10 158.85 
4 4 5500 22000 22036 10 503.49 
5 10 5000 25000 25105 10 1310.34 
6 8 4500 27000 27102 10 631.82 

 
Table 1 shows the results obtained for a set of small 

test problems. Test problems 1-2 have 2 periods, 2 
destination ports and 74, 114 items (cargoes) 
respectively; test problem 3 have 3 periods, 4 

 



destination ports and 27 items; test problem 4 have 4 
periods, 8 destination ports and 23 items. For 
comparison, the optimal solution has been computed 
using CPLEX 8.0. As can be seen from table 1, the 
obtained results seem to be encouraging. The gap 
between the optimal solution and the heuristic solution 
is small and the computation time is very short. Table 2 
shows the results obtained for a set of medium scale 
problems. Table 3 gives the computation times for a set 
of large scale problem. It show that the computation 
time of the heuristic algorithm is very short even for 
very large scale problems with tens of thousands of 
decision variables. 

We believe that heuristic algorithm will be a very 
good candidate for solving MDMKP in time critical or 
real-time applications such as sea cargo mix problems 
where a near optimal solution is acceptable, and fast 
computation is more important than guaranteeing optimal 
value. 

 
5. Conclusions 
 

We formulated the multi-period sea cargo mix 
problem as the MDMKP model and presented an effective 
heuristic algorithm for it.  

The heuristic algorithm gives fast and near optimal 
solution for the multi-period sea cargo mix problem. We 
presented experimental results to evaluate the algorithm 
by a wide range of problem instances. The heuristic 
algorithm is a very effective for time critical operations 
level decisions where a near optimal solution is acceptable, 
and fast computation is more important than guaranteeing 
optimal value.  
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