
Sensitivity Analysis for Economic Lot Size Problem  
 

Feng Yi (M.E.), Arun Kumar (Ph.D), Linet Ozdamar (Ph.D) 
School of Mechanical and Production Engineering 

Nanyang Technological University 
50 Nanyang Avenue, Singapore (639798) 

Phone:(65) 67904224 
p145773338@ntu.edu.sg; MAKumar@ntu.edu.sg; MLozdamar@ntu.edu.sg 

 
 

Abstract 

Many problems in production planning and supply 
chain optimization can be modeled as Economic Lot Size 
problem (ELS). This paper first demonstrates forward and 
backward algorithms for the economic lot size problem 
with backlogging, and then applies the two algorithms to 
analyze the sensitivities of setup cost and demand. The 
result for setup cost sensitivity is the same as the one 
described in [8] for economic lot size problem without 
backlogging. These analyses are especially useful for 
online or real-time applications which are common in 
current E_commerce. 
 
1. Introduction  

Many problems in production planning and supply 
chain optimization can be modeled as Economic Lot Size 
(ELS) problem. For example, if we consider the single 
product production scheduling problem at the 
manufacturer’s site, and also consider the same product’s 
inventory control problem at the retailer’s site, then it is a 
typical ELS provided the production and inventory cost 
have linear relationship with the production and inventory 
units. ELS is a classical problem and first proposed in [10]. 
After Wagner and Whitin provided and solved the 
economic lot size model without backlogging by an O(n2) 
algorithm, considerable research efforts have been made 
to extend the basic model. Two important extensions are 
the consideration of backlogging, and the improvement of 
computational complexity. This paper re-interprets the 
algorithms given in [12] and [7], and applies the forward 
and backward algorithms for conducting sensitivity 
analysis on setup cost and demand. 
 
2. Previous Works 

Zangwill [11] considered the inventory backlogging in 
the basic economic lot size model, and proved that there is 
an optimal solution that the production and inventory at 
every period satisfy the exact requirements. In the same 
paper Zangwill also developed an O(n3) algorithm to 
solve the model. Zangwill [12] expressed the economic lot 
size problem with and without backlogging as a network 
that has one entry with the demand summations and 
multiple exits with the demand of every period. He also 
developed an efficient O(n2) algorithm for the model 
where the production cost is fixed. It is worthy to notice 

that the cost functions of every period in the Zangwill’s 
works can be linear or nonlinear and the value can be 
computed in constant time. Blackburn and Kunreuther [3] 
developed a forward algorithm for the case where the 
production, holding and backlogging cost functions are 
linear. Some breakthrough was made at the beginning of 
1990’s. Wagelmans et al. [9] reformulate Wagner-Whitin 
model into a new model without holding cost, and employ 
a geometric method to reduce the computational 
complexity. Furthermore Hoesel, Wagelmans and 
Moerman [7] proved that the economic lot size problem 
with backlogging can also be solved with the same 
computational complexity as O(nlogn) using geometric 
methods. Federgruen and Tzur [5] [6] also develop an 
O(nlogn) forward dynamic algorithm to determine the 
optimal last setup period and minimum cost sequentially 
for the ELS with and without backlogging. Aggarwal and 
Park [2] identify the connections of the known fast array 
searching techniques in Monge arrays with the ELS, and 
obtain the same results. 

Based on the geometric interpretation of the ELS 
developed in [9], Hoesel and Wagelmans [8] studied the 
variation scopes of setup, production, holding costs and 
demand respectively such that the optimal production 
schedule remained unchanged. If the setup cost for every 
period is constant and the unit production cost is also fixed, 
Chand and Voros [4] prove that the total cost of holding 
and backlogging is a non-increasing convex function of 
the number of setups for the ELS with and without 
backlogging, and develop an O(n2) forward algorithm to 
compute the stability region of the setup cost. 
 
3. The Notations 

Mathematically, economic lot sizing model with 
backlogging is to satisfy the known demands in a planning 
horizon at a minimum cost by a single commodity. ELS 
with backlogging permits to produce later to satisfy the 
demand of a former period. The following notations will 
be used through this article: 

N: the length of the planning horizon, 
di: the demand in period i∈ {1, … , N}, 
pi: the unit production cost in period i∈ {1, … , N}, 
fi: the setup cost in period i∈ {1, … , N}, 

+
ih : the unit inventory cost i∈ {1, … , N}, 
−
ih : the unit backlogging cost i∈ {1, … , N}, 
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F(i):  the minimum cost from period 1 to the end of 

period i, the demands are satisfied by the productions in 
these periods. The inventory at the end of period is zero 
(such period is defined as regeneration period). 

)(' iF :  the minimum cost from period 1 to the end of 
period i, the demands are satisfied by the productions in 
these periods. Period i is a production period (Such period 
is defined as production period). 

B(i): the minimum cost from the beginning of period i 
to the end of period N, the demands are satisfied by the 
productions in these periods. The inventory at the 
beginning of period is zero. 

)(' iB : the minimum cost from the beginning of 
period i to the end of period N, the demands are satisfied 
by the productions in these periods. Period i is a 
production period. 
 
4. Forward and Backward Algorithms 

Zangwill [12] gave a two-step expression to 
demonstrate ELS with backlogging. Hoesel, Wagelmans 
and Moerman [7] reformulated the formulas into the ones 
that can be explained in a geometric approach. Based on 
both the preceding works, this article re-formulates the 
backward and forward dynamic expressions with the 
parameters within the studied period scope, keeps the 
formulas’ geometric meaning, and subsequently applies 
them in the setup cost sensitivity analysis and total 
demand variation. 
 
4.1 Backward Algorithm  

In [12] and [7], the backward algorithm of ELS with 
backlogging can be expressed as the following equations: 
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The geometric meaning of equalities (3) and (4) can be 

explained as follows: The lines passing through (0, 
) with slopes 

( ) construct the concave lower envelope, the 
B(s) can be obtained by maintaining this concave lower 
envelope; the points of 
( , ) construct a 

convex lower envelope, B  can be obtained by 
searching the point that the line passing through with 
slope  is tangent to the envelope. (Please refer to 
[7] for detail). 
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4.2 Forward Algorithm  

The forward algorithm can be expressed as the 
following formulas: 
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Equalities (5) and (6) can be rewritten as following: 
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The similar geometric meaning of equalities (7) and (8) 
can be explained as follows: The lines passing through (0, 

) with slopes 

( ) construct the concave lower envelope, the 
F(s) can be obtained by maintaining this concave lower 
envelope; the points of 
( , ) construct a convex 

lower envelope,  can be obtained by searching the 

point that the line passing through with slope  
is tangent to the envelope. 
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Now we have the backward and forward dynamic 
algorithms that are expressed with the parameters within 
the study periods. 

 
5. Setup Cost Sensitivity Analysis 

In this section, two scenarios will be considered: setup 
cost at a period is decreased, or increased by a variation of 
δ . The objective is to get the variation scope of the δ  
such that the production schedule remains unchanged.  

Scenario 1: Setup cost is decreased from  to if
δ−if . 

First suppose period i is a production period in the 
original problem and we will prove the following 
proposition. 

Proposition 1: If Period i is a production period in ELS 
model with backlogging, then period i will still be a 
production period if its setup cost is decreased. 

Proof: Suppose the optimal production schedule S1 for 
the new problem does not include period i. The minimum 
cost of the new optimal production schedule will not be 
less than that one for the original problem which period i 
is a production period. This contradicts that S1 is the 

optimal production schedule.□ 
Lemma 1: If period i is a production period in the final 

optimal production schedule, then  
    B(1) = F(N) = + . )(' iF )(' iB iii dpf −−
Proof:  Suppose the final production schedule is:  
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schedule for  and  respectively, we prove the 
lemma. This can be proved by contradiction. 
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It is obvious to have the following lemma directly from 

equalities (4) and (8): 
Lemma 2: If in period i, the setup cost is decreased 

from  to if δ−if (period i might not be a production 
period), then  

(1) From period 1 to i-1,  remains unchanged; 
 decreases by 

(.)'F
)(' iF δ ; 

(2) From period i+1 to N,  remains unchanged; 
 decreases by 

(.)'B
)(' iB δ . 

From Proposition 1 and preceding analysis, we can get 
the following conclusion: 

Proposition 2: If period i is a production period in 
ELS with backlogging, and its setup cost is decreased 
from  to if δ−if , and the production schedule remains 

unchanged, then the optimal cost decreases by δ . 
Now suppose period i is not a production period in the 

original problem. Suppose period i becomes a production 
period in the new problem for its setup cost decreases 
from  to if δ−if

if −−
, then the optimal cost is 

+)(' iF )(' iB iidp δ− , and this value should 
be at least less than the original minimum cost. So: 

             +)(' iF )(' iB iii dpf −− δ− < F(1),  

then      δ > + . )(' iF )(' iB iii dpf −− )1(F−
So if δ ≤  + , then 

period i will not become a production period in the new 
problem. So 
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conclusion can be obtained: 
Proposition 3: If Period i is not a production period in 

ELS with backlogging, and its setup cost is decreased 
from  to if δ−if , the variation of δ  is bounded by 

Min{ , }. if )1()(' dpfiF iii −−)(' Bi + F−
Scenario 2: Setup cost is increased from  to if

δ+if . 
Opposite to Proposition 1, it is obvious that if a period 

is not a production period in the final production schedule, 
it is impossible for it to become a production period if its 
setup cost is increased. Thus, the period is a production 
period in the final production schedule can be considered 
only.  

The idea here is to compute the optimal minimum 
value for problem that period i is not a production period 
from period 1 to N, the obtained optimal value is the upper 
bound for the problem that the setup cost of period i is 
increased and period i remains a production period. 

Mathematically, the optimal minimum cost can be 
expressed as: 
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In order to get the value of G(.) in equality (9), first we 
prove the following lemma:  

Lemma 3: If a period is not a production period in the 
final production schedule, and its setup cost is increased, 
this period will still not be a production period in the final 
production schedule, and the final production schedule 
and optimal cost will remain unchanged. 

Proof: Similar to proposition 1, the first part is obvious. 
The second part is proved as follows:  

Suppose setup cost at period i is 1δ+if  and 

2δ+if respectively, and period i is not a production 
period in the final production schedule for both problems 
with different setup cost. Because the optimal total cost 
will only count the setup costs of final production periods, 
holding and backlogging costs between the consecutive 
production periods, and the other parameter values except 
the setup cost at period i are the same for both problems, 
so a feasible solution for one problem is also feasible for 
the other one. This proves the lemma. □ 

Lemma 3 will be used in the following idea to compute 
the value of G(.): Because of increasing setup cost, it is 
possible that a production period i will be out of the final 
production schedule. So there is a break value of setup 
cost that period i is a production period in the final 
production schedule if its setup cost is less than this value 
(Proposition 1), and period i is not a production period in 
the final production schedule if its setup cost is larger than 
this value (Lemma 3). Also from Lemma 3, if setup cost is 

larger than the setup break point value, the optimal final 
cost is the same no matter how big the setup cost is.   So 
period i in equality (9) can be got if a big enough setup 
cost is assigned to period i such that period i will not be a 
production period in the final optimal solution.  

Now it is clear that we can get the value of G in 
O(nlogn) if the setup cost for period i is assigned a big 
enough value so that the period i is not a production period 
in the final solution. Of course we can start to solve the 
problem from B(i +1) or F(i -1). Such big enough setup 
value for period i exists, for example the new setup cost is: 
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If production occurs at such a period, the cost will be more 
than that for setup at every period, carrying and 
backlogging the total demands from the beginning to the 
end, and producing at the most expensive unit cost. Any 
production schedule other than including this period will 
definitely be smaller. 

After value of G is computed, the period i will remain 
the production period if F(n)+ δ ≤ G. So the upper 
bound for the value of δ  is G-F(n). So the following 
result holds: 

Proposition 4: The maximal allowable increase of fi 
can be calculated in O(nlogn) time. 

 
6. Total Demand Variation Analysis 

It is also obvious to get the following lemma from 
equalities (4) and (8): 

Lemma 4: If in period i, the demand is changed from 
 to id δ±id  then   

(1) From period 1 to i-1,  remains unchanged, 

 changes by 

(.)'F
)(' iF δip± ; 

(2) From period i+1 to N,  remains unchanged, 

 changes by 

(.)'B
)(' iB δip± . 

Here, we will study how the variation of the total 
demand affects the original optimal production plan. 

Suppose the δ±  units are increased or decreased at 
period i. The objective is still to let the whole costs 
minimum. Such minimum value can be expressed 
mathematically as follows for the case the products are 
increased or decreased: 

           
})(')('{min)(

1
δδ iiiiNi

pdpfiBiFVI +−−+=
≤≤

(10) 

})(')('{min)(
1

δδ iiiiNi
pdpfiBiFV −−−+=

≤≤
 (11) 

 
Let us discuss (10) first. Define li is the line which 
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the values of are the same for 
all production periods, so only the period with the lowest 

can be in the concave lower envelop for all production 
periods. Define such period as period A. The line l
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minimum value of  due to A 
is a production period. 
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                          Figure 1 

From Figure 1, we can see that if the increased δ  is 
within [0, B1], which B1 is the first break point of the 
concave lower envelop, then the production period A will 
produce the increased units; if the increased δ  is not 
within [0, B1], then another period which is not a 
production period at the original optimal solution will 
produce the increased units, and therefore becomes a 
production period in the new solution. 

 
 
 
 
 
 
 
 
 
 
 
                    Figure 2 
Same logic can applied for (11) except that li is the line 

which passes through point 
( 0 ) with slope of ; and 

only the period with the biggest can be in the concave 
lower envelop for all production periods due to the line 
gradient is negative. Figure 2 describes this case. 

iF +)(' ip

In [7], it is proved that time complexity of constructing 
such a concave lower envelop in Figure 1 and 2 will be 
O(nlogn). They also proposed that balanced tree such as 
2-3 tree [1] is the efficient data structure for supporting 
such a procedure. 

From the preceding analysis, we can draw the 
following result: 

Proposition 5: 
(1) If the solution remains the same, the increased total 

demand is produced at the period with least production 
cost; and the decreased total demand is extracted from the 
period with largest production cost. 

(2) The maximum increased (decreased) total demand 

variation is the value of B1 which is described in Figure 1 
(2). 

(3) The value of B1 can be computed at time complexity 
of O(nlogn). 

 
7. Conclusion  

This article describes the backward and forward 
algorithms for the economic lot size problem with 
backlogging, and subsequently applies the algorithms to 
analyze the two main parameters of the model: variation 
of period setup cost, and total demand variation. Although 
the computational complexity of the algorithm for 
determining the sensitivity range of setup cost and 
demand is O(nlogn), the complexity of solving the 
problem itself is not augmented by sensitivity analysis 
since these two can be implemented concurrently. Such 
analysis is very useful for online or real time ELS 
planning or scheduling problems which are very common 
in today’s e_commerce applications. 
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