Planning and Specifying the Composition of Web Services

Xiang Gao
INFOLAB
Tilburg University
The Netherlands
gao@uvt.nl

Abstract

As the Web services paradigm becomes popular and
more and more gplications are aeated and deployed as
Web services, the need for developing new solutions
tackling the mmposition of Web services becomes
manifest. However, emerging web service standards and
existing methods are nat sufficient for redizingthe goal of
flexible aad dynamic composition of Web services,
athough some preliminary work has been condicted in the
areaof services composition. This stuation hes raised the
interesting research pants for creating and developing
new approacdes for the Web services composition. In this
paper we separate the design andimplementation phases of
the mmposite services, and concentrate on the research of
the way a composite service is constructed in terms of its
constituent services. We cdl this way the composition
logic of a composite servicee We firstly propaose
well-defined ndions“ composition structures’ to represent
the joints among the constituent services and generate the
reliable structure of a @wmposite service, and then we
provide aspecification mechanism to clealy spedfy the
internal dependencies of a mmposite service in terms of
the notification and detaflow dependencies. Our solutions
for planning and spedfying the composition of Web
services can effectively support the properties of
modularity, interoperability, dynamic reconfigure-ability
and fault-tolerancefor a cmposite software system in the
dynamic Web environments of business applications,
which are aorganic part of our framework for tadling the
challenges of Web service discovery and composition on
which we ae working.

1. Introduction

Web services are becoming the prominent paradigm for
distributed computing and eledronic business because
they represent a novel approach and framework for
creding and deploying applicationto-applicaion
communication on the Web. By Web services, we refer to
self-contained, Internet-enabled applications cgpable not
only of performing business adivities on their own, but
also possessng the ability to engage other Web servicesin
order to complete high-order business transactions.
Examples of such Web services include bill payment,
customized online newspapers, or stock trading services
and so on The platform neutral nature of Web services
creaes the opportunity for developing composite services
by using existing atomic or composite services possbly

offered by different organizations. For example, a
travel-plan-servicepackage @n be developed by
combining several aomic services such as
booking-air-ticket-service, booking-hatel-service,
making-reservation-for-restaurant and renting-car-service,
etc., based on their WSDL descriptions[4].

As the Web services paradigm becomes popular and
more and more gplicaions are aeated and deployed as
Web services, the need for developing new solutions
tackling the mmposition of Web services becmes
manifest. However, emerging web service standards (e.g.,
WSDL, UDDI, WSH. and BPFL4WS) and existing
methods are not sufficient for realizing the goal of flexible
and dynamic composition of Web services. Although some
preliminary work has been condiwcted in the aea of
services composition, mostly in aspects of workflow-like
service integration, service conversation, and B2B
protocol definition [1, 2, 3]. However, these gproaces
are dther not flexible or too limited, there is gill alot of
reseach that neeals to be done in this diredion. This
situation hes raised the interesting reseach points for
creaing and developing new approaches for the Web
services composition.

Thereal challengein servicescompositionliesin how to
provide acomplete solution that supports the entire life
cycleof servicescomposition, i.e., planning, definition and
implementation. By planning, we mean that according to
user’s requests, a composition plan that how to complete
the user’s tasks which maps his requests needs to be
proposed firstly, afterwards, then the candidate atomic or
composite servicesthat posshly complete these tasks need
to be discovered, correspondingly. During this phase,
every task from the user side needs to be mapped to eadh
service. The outcome of this phase is the synthesis of a
composite service out of desirable, or potentially avail able,
atomic services, and the structure of a composite serviceis
generated andformed. At the definition phase, the internal
dependencies of the cmposite service need to be clealy
defined and specified. The outcome of this phase is the
interdependencies spedficaions of services composition.
Finally, the implementation phase implements the
composite service bindings based on the services
composition spedfications. The first two phases ®rve &
the blueprint and reference of the third phase within the
entire life g/cle of services composition. Therefore, the
first two phases are aucial for the implementation of Web
services composition. Without the gpropriate planning
and definition o Web services composition, it is
imposshble to implement Web services composition and

satisfy the user’s requests. Thusthe first two phases within
the antire life gycle of services composition are very
important, and they correspondingly raise two interesting
reseach points, one is how to systematicdly plan and
model the structure of a wmposite service? Ancther is
how to clealy spedfy the inter-relationships of a
composite service? If these two isales can be properly
solved, the development and implementation of Web
services composition would be greatly facilitated.
However, the eisting standards and approaches haven't
systematicdly addressed these isaues, or are not enough to
effectively tadle these isaues.

In this paper we concentrate on first two interesting
issles and propose the well-defined ndions
“Composition Structures” to plan and model the
structure of a composite service during the planning stage
of services compasition, and then we @me up with a
specification mechanism that effectively tackles the
definition stage of the entire life oycle of services
composition, as it can clealy spedfy the internal
dependencies of the composite service which effedively
fadlitated the implementation of services composition. In
the planning stage of servicescomposition, our objectiveis
to easily generate the composition processand to support
the composer in seleding most suitable services. Thus we
modified and enhanced the task structures notions [7] and
developed our new composing nations for the services
composition: composition structures. These wmposition
notions capture the most criticd asped of services
composition: joints among the several services, and
addressthe use of libraries of well-defined building blocks
to represent the joints and conned the services, which
provides akind d reliable and lightweight mecdhanism for
servicescompasition. By using these nations and notations,
the basic structure of services compostion can be
generated, afterwards, and the complete and nested
structure of services composition also can be generated
based on the basic structure of services compositionif it is
necessary. Naturally, our assumption is that the composer
will prefer deding with appropriate and fewer services
where posshle, which increases the seaurity and the
trustworthiness of the resulting services. During the
definition stage of services composition, we would like to
provide a specification approach which spedfies the
internal dependencies of a mmposite service. We view
every service as an independent unit of computation. Our
work ismotivated by the observationthat a cmposite Web
service is constructed by composing several constituent
Web services, which are exeaited in a heterogeneous
environment. The resulting composite Web service might
be very complex in structure and relations, containing
many notification and dataflow dependencies among
their constituent services. Furthermore, the exeaution of
such a composite service may take alongtime to complete,
and may contain long periods of inadivity, often dueto the
constituent services requiring uwser interactions. In a
distributed environment, it is inevitable that long running
composite service will require support for fault-tolerance
and dynamic reconfiguration: machines may fail, services

may be moved or withdrawn and appli cation requirements
may change. In such an environment it is esential that the
clear specification d the structure and internal
dependencies of the cmposite service need to be clealy
specified, and this ecificaion reed support the
properties of modularity, interoperability, dynamic
reconfigure-ability and fault-tolerance for a cmposite
software system in the dynamic Web environments of
businessapplications.

Thus the focus of this paper is on the following:

« We propose well-defined ndions and ndations
“composition structures’ to capture the most key
asped of services composition: joints among the
several constituent services; and represent these
joints and connect the mnstituent services. By
using “composition structures”, the structure of a
composite service ca be reiably generated and
formed.

* Afterwards, we cme up with a spedfication
medhanism that can clearly spedfy the internal
dependencies of a mmposite service which
include the notification and dataflow
dependencies, and it can effectively support the
properties of modularity, interoperability,
dynamic reconfigure-ability and fault-tolerance
for a composite software system in the dynamic
Web environments of businessappli cations.

The outline of this paper is as follows. Section 2 firstly
addresses our novel notions and notations: composition
structure, which has four basic building blocks gich as
and-split, or-split, and-join and or-join. Sedion 3 comes
up with ou spedfication mechanism for the services
composition, and last two sections present the related work,
summarize our contributions and conclude the paper.

2. The Composition Structures

As we know, the dynamism and unpredictability of the
business applicaions and Web environment require that
the Web services composition have the aility to adapt to
unknown situations. We believe that some form of
enhanced features from refledion and process modeling
will provide the right ingredients to enable adaptabil ity.

Refledion [5] is the ad of reveding a system's
implementation, and alowing changes to that
implementation in a @ntrolled manner. By inspeding
internal aspeds of a system, its competence may be
improved, either through better performance or greder
adaptability. The concepts of refledion have been applied
in many areas of computing and information techndogy,
where it has been employed as a means of building up
flexible and extensible computer systems — ones that can
evolve ad adapt to changing circumstances and
expectations [6]. In this paper we gply to the concept of
refledion and insped the internal aspects of a composite
service which includes two main parts. the structure of a

composite service ad the internal dependencies of a
composite service. Correspond ngly, we come up with our
solutions in order to tadkling these two parts. We believe
our solutions tackle the most critical aspects of a
composite service and satisfy the requirements of the
flexibility, adaptability and reliability for a cmposite
service

During the process modeling of a composite service
there is a vital asped and a hard point that needs to be
firstly tackled: that ishow to deal with thejointsamong the
constituent services. Here we would like to propaose our
naotions: composition structures based on the @ncept of
task structures. As we know, a composite Web service
involves the mmpletion d several Web services. These
several services nead coordinate to complete a spedfic
task. Thiskind of coordination is actualy the aordination
of several tasks, which has the processstyle. For example,
Flight-booking service need to be finished before
Accommodation-booking service commences. After
finishing ~ Accommodation-booking service ad
Attradion-searching service, the mmposite service neals
to choose one service between Bicycle-booking service
and Car-rental-booking service After that,
Events-planning service takes place Processes focus on
the coordination of tasks. Any process gedfication
language shoud at least be caable of capturing sequential
composition, moments of choice, paralel composition,
and various forms of synchronization. Task Structures [7]
is notions and ndations for describing the various tasks
within aprocess and their interdependencies. In this paper
we enhance the notions and notations of task structures
specifically for the Web services composition. Here we
only apply to these enhanced nctions and notations to
generate and model the structure of a composite Web
service and use acther solution to specify the
inter-dependencies among the mnstituent services of a
composite Web service We believe this kind of treament
is more reasonable, because the mwmposing structure and
the dynamic inter-dependencies of a composite Web
serviceare two different facets of a composite serviceand
have their own charaderistics. It deserves to obtain the
different treaments and apply to the different approaches
and solutions.

Thus the composing structure of a cmposite Web
service may be cmposed from one or more of five
particular building Hocks, here we cdl them
“Composition Structures”. (Naturaly, we might
introduce more @wmposition structures smilar to process
patterns in workflow reseach community [8,9,10].
However, here our purpose is to generate and model the
structure of the mordination of several Web services,
which is different from modeling the @ntrol structure of
workflow, athough they have some similarities. After all,
the composing structure of acomposite serviceis diff erent
from the ntrol structure of workflow. Moreover,
over-introducing the building blocks might lose flexibility
and manageability for a cmposite service. This aspect of
reseach is beyond the scope of this paper).

Sequential-composition: After Service A has been

performed, only Service B will be performed. This is
cdled Sequential-composition between two services.

AND-split: After Service A has been performed, both
Service B and Service C will be performed. Service A is
said to trigger the other services.

OR-split: After Service A hasbeen performed, either B
or C, but nat both, will be performed. This is called a
decision point.

AND-join: ServiceC cannot be performed until both A
and B have been performed. This form of join is caled a
synchronizer.

OR-join: Service C will be performed whenever either
A or B, but nat both, have been performed. This form of
joiniscdled adiscriminator.

The aowve notations are naot limited to relations among
threeservices, andthey might be extended more than three
services. For example, Service A can trigger more than
two parallel services at the sametime.

Please note the @ove notations are not only notations,
but also they are nations, since they express a kind of
semantics and satisfy the requirements of process
specification language which captures sequential
composition, moments of choice, parallel composition,
and various forms of synchronization.

3. Specifying the Internal Dependencies of a
Composite Service

3.1 Specification Approach

In terms of the composition structures nations, the
reliable structure of a composite service can be generated
and formed. In order to describe the dynamic
dependencies of a cmposite service, and there is the
seoond part of work which needs to be done. We need to
clealy spedfy two vita inter-dependencies of acomposite
service the notification dependency and the
dataflow dependency. The natification dependency
meansthat there exists the sequential relation between two
services or two services gructures. For example, Service2
can't be started if Service 1 has not completed; the
dataflow dependency means that there eist the
data-flowing relations between two services or two
services gructures. For example, Service 2 neals the data
of Service 1; Accommodation-booking service needs the
data of the Flight-booking service such as the date,
location and the number of clients, etc. We asume that
every dataflow dependency also has the natification
dependency.

Notification Dependencies. Each ndification
dependency takes the form:

Notificaionfrom{...}

For example, Service 2 can't be started until Service 1 is
successully completed.

Service 2

{

Notification from
{Service 1if Service 1 succesg

}

Dataflow dependencies. If we use the textud
representation in the dataflow dependencies, ead
dataflow dependency takes the foll owing form:

Service 2
{
Inputs {inpu-X from
{output-x of Servicel};
input-Y from
{...};

}

For example, the inpu-A of Service 2 neads the output-a
of Service 1; and the input-B of Service 2 needs the
output-b of Servicel.

Service 2

{
Inpus{input-A from
{output-a of Service 1} ;

input-B from
{output-b of Service1}
}
}
3.2 Example

Now that we have the specification mechanism to
specify the @mposing structure ad dynamic
inter-dependencies of a cmposite service, a wmplete
specification of a composite service can be formed. If we
take the “Travel Solutions’ example, its complete textual
specification can be written in the foll owing:

Composite-service “Travel Solutions”
{
AND-split from beginning splitting to Flight-booking
service and Attradion-seaching service
{
Service Flight-booking
Inpus {date; location; the quantity of the
tickets; ...},
Service Accommodation-booking
Notificaion from { Service Flight-booking if it is
successul}
Inputs
{outputs (date; location; the quantity of the
tickets; ...) of Flight-booking service}
I3
Service Attraction-searching
Inputs{locdtion, ...},
AND-join from Accommodation-booking service ad
Attradion-seaching serviceto adecision point (OR-split),

OR-split from Accommodation-booking service and
Attradion-seaching serviceto Bicycle-booking serviceor
Car-rental-booking service,

ServiceBicycle-booking
Notificaion from

{Service Accommodation-booking and Service
Attradionseaching if they are successul}

Inpus{...};

Service Car-rental-booking

Notification from

{Servicer Accommodation-booking and Service
Attradion-seaching if they are succes<ul}

Inpus{...},

OR-join from Bicycle-booking service or

Car-rental-booking service to Events-planning service,
Service Events-planning
Notification from
{Service Bicycle-booking or
car-rental-booking if one of them is successul}
Inputs{ outputs(date;location;...) of Attradion-seaching
service}

}

Similarly, the &ove textual spedfication aso can be
drawn in a graphical manner with the textual annotations.
Because of the limitation of space, here we will not draw
the complete graphica spedficaion Hueprint.

Service

4. Related Work

Most of the work in service composition has focused on
using workflows either as a engine for distributed adivity
co-ordination or as a tool to model and define service
composition. Representative work is described in [14]
where the authors discussthe development of a platform
specifying and enacting composite services in the context
of a workflow engine. The elow system provides a
number of features that support service spedficaion and
management, including a simple @mposition language,
events and exception handling.

The work related to Web services and co-ordination or
composability can be found in [25]. In this paper the
authors examine the potential of using coordination
technology to model eledronic business adivities and
illustrate the benefits of this approacd.

Our work in this paper is different from the
above-mentioned work. Our main ideais to separate the
design and implementation of a composite service, and
concentrate on the research of composition logic for the
composite services. Correspondngly, we come upwith our
sound solutions for the service mmposition. We believe
the advantages of this way are to greatly fadlitate
discovery of Web services, since the generated structure by
using our approadies maps the services we need to
discover. Moreover it possesss more flexibility and
adaptability, and the structure of a cmposite service may
be esily changed and adapted according to the user’'s
redistic needs. Our work satisfies and supports the main
requirements of aflexible mmposite software system such

as modularity, interoperability, flexibility, adaptability and
fault-tolerance ad dynamic reconfiguration in the
dynamic Web environments of businessapplications. Our
concrete approades are related to the following research
fields:

Generic processmodels: In[27], each workflow schema
isasciated with afamily of variants. A particular task in
the schema may be viewed as the root of an extensible
class hierarchy, with the hierarchy expressng allowable
instantiations of that particular task.

Workflow pattern: In the work of [21], a systematic
overview of processcontrol constructorsis provided. The
patterns address business requirements in an imperative
workflow style, but are independent of any particular
workflow language. They encapsulate commonly used
forms of complex workflow functionality.

Architedure Description Languages: Software
architecture specification is intended to describe the
structure of the cmponents of a software system, their
interrelationships, and principles and guidelines governing
their design and evolution [15, 16, 17]. It is common to
model an applicdion as a set of components
communicaing through connedors. Typicdly, an
applicaion is composed from components, where a
component provides rvices to other comporents. A
component within an application can be ather a simple
component, or composed out of a group of other
components. The components provide and oklain service
through ports. The interaction between ports can take
many forms, for example, buffered message passng,
one-to-many event disemination, or synchronows
request-reply communication. Currently available ADLs
however do not capture the computation unit structure of a
composite application. This requires describing the
structure and inter-dependencies of an application. Our
approaches cgpture this gructure in terms of composition
structures notations and their dependencies by spedfying
input and output requirements. Ancther advantage of
describing composite structure in terms of services is that
it directly enables applicdion level fault tolerance
requirements to be spedfied and controlled.

5. Concluding Remarks and Future Research
Directions

In this paper we come up with our sound solutions for
the composition logic of the composite services, which is
referred to the way a composite service is constructed in
terms of its constituent services. Our ideas are to separate
the design and implementation phases of a composite
service and concentrate on the researcch of composition
logic of the composite services. The alvantages of this
treament are to make the composite services have more
flexibility and adaptability, which greatly fadlitates the
discovery of the mnstituent services, sincethe structure of
acomposite service we generate maps the discovery of its
constituent services. Our concrete approaches are that we
firstly propose well-defined notions “composition
structures’ to represent the joints among the mnstituent

services and generate the reliable structure of a composite
service, and then we provide aspedficaion mechanism to
clealy spedfy the internal dependencies of a cmmposite
service in terms of the natification and dataflow
dependencies. Our work is motivated by the main
requirements of a flexible composite software system such
as modularity, interoperability, flexibility, adaptability and
fault-tolerance ad dynamic reconfiguration in the
dynamic Web environments of businessapplications. Our
solutions and spedfication medhanisms stisfy these
requirements and support these properties. The cncrete
reasons are summarized in the foll owing:

« We view every service @& an independent
computing uwnit. Our nations, notations and
specification mechanism are gplied to easly
generate the structure of the composite
computing urit (or composition structure or
service) and clearly specify the inter-relations of
these nstituent computing wnits. So ou
solutions support the modularity and
interoperability of the cmposite system.

e Our *“composition structures’ notions and
notations provide akind of flexible, adaptable
medanism to address the composition logic of
the composite system, which means the structure
of a mmposite service can be eaily and reliably
adapted if the users’ neels are changed.

+ Our solutions provide a reliable spedficaion
mechanism for the implementation d a
composite service. We believe only we have the
clea spedfication of a mmpasite servicein an
abstrad manner, thenit can support the properties
of fault-tolerance and dynamic reconfiguration
for along running composite service on the Web.

Based on ou above work, future work might include
two reseach directions: one is to continue to research the
composition logic of Web services, specifically addressthe
composition logic in a more forma way; another is to
develop the @rresponding application tools or languages
for our specifications of the composite services.

References

[1] F. Casati, M. Sayal, and M-C Shan. Developing E-Services
for Composing E-Services. Procs. 13" CaiSE conference
Switzerland, 2001.

[2] C. Busder. The Role of B2B Protocols in Inter-Enterprise
Process Exeaution. Procs. 2" VLDB-TES Workshop, Rome,
2001

[3] H. Kuno M. Lemon, A. Kap, and D. Beringer.
Conversations + Interface = Business Logic. Procs. 2™
VLDB-TSE Workshop, Rome, 2001.

[4] Web Service Definition
http://mww.w3.org/ TR/wsdl

Language.

[5] Kiczdes, G., des Rivieres, J. & Bobrow, D.G., The Art of
Metaobjed Protocol, The MIT Press, Cambridge, Mass., USA.
1991

[6] Maes, P, “Computational Refledion”, The Knowledge
Engineeing Review 3(1), 1-19. 1988.

[7] Hofstede, A. t. & Nieuwland, E. “Task Structure Semantics
through Process Algebra”, Software Engineging Journal
8(1),1993.

[8] W.M.P.van der Aalst, Don't go with the flow: Web services
composition standards exposed. Web Services-Been there done
that? Trends of Controversies. Jan/Feb 2003 issue of IEEE
Intelligent Systems.

[9] W.M.P. van der Adst, M. Dumas, A.H.M. ter Hofstede, and P.
Wohed, Pattern Based Analysis of BPML (WSCI), QUT
Tedhnicd report, FIT-TR-2002-05, Queensland University of
Tedhnology, Brisbane, 2002.

[10] W.M.P. van der Adst, M. Dumas, A.H.M. ter Hofstede, and
P. Wohed, Pattern Based Analysis of BPELAWS, QUT
Tedhnicd report, FIT-TR-2002-04, Queensland University of
Tedhnology, Brisbane, 2002.

[11] B. Benatallah, M. Dumas, M.C.Fauvet and H.Y.Paik,
Self-Coorinated and Self-Traced Composite Services with
Dynamic Provider Seledion. UNSW-CSE-TR-0108, The
University of New South Wales, Sydney, 200L.

[12] W.M.P van der Adst, A.PBarros, A.H.M. ter Hofstede and
B. Kiepuszewski. Advanced workflow patterns. In Proc. of the
5" IFCIS Int. Conference on Cooperative Information Systems,
Eilat, Israel, September 2000. Springer Verlag.

[13] Buschmann, F., Meunier, R., Rohnnert, H., Sommerlad, P.
& Stal, M. (19%), Pattern-Oriented Software Architedure — A
System of Patterns, Wiley and Sons Ltd., USA.

[14] F.Casati, S. llnicki, L.-J.Jin, V. krishnamoorthy, and M.-C.
Shan. Adaptive and dynamic service composition in eFlow. In
Proc. Of the International. Conferenceon Advanced Information
Systems Engineeing (CaiSE), Stockholm, Sweden, June 2000.

Springer Verlag.

[15] F. Ranno, S.M. Wheder and S.K. Shivastava, “A System for
Spedfying and Co-ordinating the Exeaition o Reliable
Distributed Applications’, Conference on Distributed
Applicaions and Interoperable Systems (DAIS 97), Germany,

1997.

[16] J Magee N. Dulay, S. Eisenbach and J. Kramer,
“Spedfying Distributed Software Architedures’, Procealings of
the 5™ European Software Engineaing Conference, Barcdona,
1995.

[17] J. Magee ad J. Kramer, “Dynamic Structure in Software
Architedures’, SIGSOFT 96, ACM Software Engineaing Notes,
Vol 21 No. 6, November 1996.

[18] BPML.org. Business ProcessModeling Language (BPML).
Acceszd from www.bpml.org, 2002

[19] BPML.org. BusinessProcessModeling Notation (BPMN),
Working Draft. Accessed from www.bpmi.org, 2002

[20] Microsoft Corporation. Xlang web services for business
design. Accessed from www.gotdotnet.com, 2001

[21] Adst, W.v.d., Barros, A., Hofstede, A.t.& Kiepuszewski, B.
(2000), Workflow patterns, Technicd reports, Queensand
University of Technology.

[22] B. Benatalah, M. Dumas, M-C. Fauvet, F.A.Rabhi.
Towards Patterns of Web Services Composition. Technicd
Report, University of New South Wales, Sydney.
UNSW-CSE-TR-0111. November 2001.

[23] B. Benatalah, M. Dumas, Q.Z. Sheng, and A.H.H. Ngu.
Dedarative Composition and Peer-to-Pea Provisioning of
Dynamic Web Services. In Proc. Of the International Conference
on Data Engineeing, San Jose, USA, February 2002.

[24] CurberaF., Nagy W. and Wegawarana S. 2001. Web
Services. Why and How?. http://researchweb.watson.ibm.conm/

[25] G.A. Papadopoulos and F. Arbab. Modelling Eledronic
CommerceActivities Using Control-Driven Coordination, Ninth
International Workshop on Database and Expert Systems
Applications, Vienna, Austria, 1998, IEEE Press

[26] J. Yang and P. Papazoglou. Web Component: A Substrate
for Web Service Reuse aad Composition. In Proceading of
CAISE’02, 20Q2.

[27] Adl<t, W.v.d., How to Handle Dynamic Change and Capture
Management Information, in “Procealings of the 4th IFCIS
International Conference on Cooperative Information Systems”,
pp. 115-126. 1999.

