
 Planning and Specifying the Composition of Web Services

Xiang Gao
INFOLAB

Tilburg University
The Netherlands

gao@uvt.nl

Abstract
 As the Web services paradigm becomes popular and
more and more applications are created and deployed as
Web services, the need for developing new solutions
tackling the composition of Web services becomes
manifest. However, emerging web service standards and
existing methods are not suff icient for realizing the goal of
flexible and dynamic composition of Web services,
although some preliminary work has been conducted in the
area of services composition. This situation has raised the
interesting research points for creating and developing
new approaches for the Web services composition. In this
paper we separate the design and implementation phases of
the composite services, and concentrate on the research of
the way a composite service is constructed in terms of its
constituent services. We call this way the composition
logic of a composite service. We firstly propose
well-defined notions “composition structures” to represent
the joints among the constituent services and generate the
reliable structure of a composite service, and then we
provide a specification mechanism to clearly specify the
internal dependencies of a composite service in terms of
the notification and dataflow dependencies. Our solutions
for planning and specifying the composition of Web
services can effectively support the properties of
modularity, interoperability, dynamic reconfigure-abil ity
and fault-tolerance for a composite software system in the
dynamic Web environments of business applications,
which are a organic part of our framework for tackling the
challenges of Web service discovery and composition on
which we are working.

1. Introduction

 Web services are becoming the prominent paradigm for
distributed computing and electronic business, because
they represent a novel approach and framework for
creating and deploying application-to-application
communication on the Web. By Web services, we refer to
self-contained, Internet-enabled applications capable not
only of performing business activities on their own, but
also possessing the ability to engage other Web services in
order to complete high-order business transactions.
Examples of such Web services include bill payment,
customized on-line newspapers, or stock trading services
and so on. The platform neutral nature of Web services
creates the opportunity for developing composite services
by using existing atomic or composite services possibly

offered by different organizations. For example, a
travel-plan-service-package can be developed by
combining several atomic services such as
booking-air-ticket-service, booking-hotel-service,
making-reservation-for-restaurant and renting-car-service,
etc., based on their WSDL descriptions [4].
 As the Web services paradigm becomes popular and
more and more applications are created and deployed as
Web services, the need for developing new solutions
tackling the composition of Web services becomes
manifest. However, emerging web service standards (e.g.,
WSDL, UDDI, WSFL and BPFL4WS) and existing
methods are not sufficient for realizing the goal of flexible
and dynamic composition of Web services. Although some
preliminary work has been conducted in the area of
services composition, mostly in aspects of workflow-like
service integration, service conversation, and B2B
protocol definition [1, 2, 3]. However, these approaches
are either not flexible or too limited, there is still a lot of
research that needs to be done in this direction. This
situation has raised the interesting research points for
creating and developing new approaches for the Web
services composition.
 The real challenge in services composition lies in how to
provide a complete solution that supports the entire life
cycle of services composition, i.e., planning, definition and
implementation. By planning, we mean that according to
user’s requests, a composition plan that how to complete
the user’s tasks which maps his requests needs to be
proposed firstly, afterwards, then the candidate atomic or
composite services that possibly complete these tasks need
to be discovered, correspondingly. During this phase,
every task from the user side needs to be mapped to each
service. The outcome of this phase is the synthesis of a
composite service out of desirable, or potentially available,
atomic services, and the structure of a composite service is
generated and formed. At the definition phase, the internal
dependencies of the composite service need to be clearly
defined and specified. The outcome of this phase is the
interdependencies specifications of services composition.
Finally, the implementation phase implements the
composite service bindings based on the services
composition specifications. The first two phases serve as
the blueprint and reference of the third phase within the
entire life cycle of services composition. Therefore, the
first two phases are crucial for the implementation of Web
services composition. Without the appropriate planning
and definition of Web services composition, it is
impossible to implement Web services composition and

satisfy the user’s requests. Thus the first two phases within
the entire life cycle of services composition are very
important, and they correspondingly raise two interesting
research points, one is how to systematically plan and
model the structure of a composite service? Another is
how to clearly specify the inter-relationships of a
composite service? If these two issues can be properly
solved, the development and implementation of Web
services composition would be greatly facil itated.
However, the existing standards and approaches haven’t
systematically addressed these issues, or are not enough to
effectively tackle these issues.
 In this paper we concentrate on first two interesting
issues and propose the well-defined notions
“Composition Structures” to plan and model the
structure of a composite service during the planning stage
of services composition, and then we come up with a
specification mechanism that effectively tackles the
definition stage of the entire life cycle of services
composition, as it can clearly specify the internal
dependencies of the composite service which effectively
facilitated the implementation of services composition. In
the planning stage of services composition, our objective is
to easily generate the composition process and to support
the composer in selecting most suitable services. Thus we
modified and enhanced the task structures notions [7] and
developed our new composing notions for the services
composition: composition structures. These composition
notions capture the most critical aspect of services
composition: joints among the several services; and
address the use of libraries of well-defined building blocks
to represent the joints and connect the services, which
provides a kind of reliable and lightweight mechanism for
services composition. By using these notions and notations,
the basic structure of services composition can be
generated, afterwards, and the complete and nested
structure of services composition also can be generated
based on the basic structure of services composition if it is
necessary. Naturally, our assumption is that the composer
will prefer dealing with appropriate and fewer services
where possible, which increases the security and the
trustworthiness of the resulting services. During the
definition stage of services composition, we would like to
provide a specification approach which specifies the
internal dependencies of a composite service. We view
every service as an independent unit of computation. Our
work is motivated by the observation that a composite Web
service is constructed by composing several constituent
Web services, which are executed in a heterogeneous
environment. The resulting composite Web service might
be very complex in structure and relations, containing
many notification and dataflow dependencies among
their constituent services. Furthermore, the execution of
such a composite service may take a long time to complete,
and may contain long periods of inactivity, often due to the
constituent services requiring user interactions. In a
distributed environment, it is inevitable that long running
composite service will require support for fault-tolerance
and dynamic reconfiguration: machines may fail, services

may be moved or withdrawn and application requirements
may change. In such an environment it is essential that the
clear specification of the structure and internal
dependencies of the composite service need to be clearly
specified, and this specification need support the
properties of modularity, interoperability, dynamic
reconfigure-abil ity and fault-tolerance for a composite
software system in the dynamic Web environments of
business applications.

 Thus the focus of this paper is on the following:

• We propose well-defined notions and notations
“composition structures” to capture the most key
aspect of services composition: joints among the
several constituent services; and represent these
joints and connect the constituent services. By
using “composition structures” , the structure of a
composite service can be reliably generated and
formed.

• Afterwards, we come up with a specification
mechanism that can clearly specify the internal
dependencies of a composite service which
include the notification and dataflow
dependencies, and it can effectively support the
properties of modularity, interoperability,
dynamic reconfigure-abil ity and fault-tolerance
for a composite software system in the dynamic
Web environments of business applications.

 The outline of this paper is as follows. Section 2 firstly
addresses our novel notions and notations: composition
structure, which has four basic building blocks such as
and-split, or-split, and-join and or-join. Section 3 comes
up with our specification mechanism for the services
composition, and last two sections present the related work,
summarize our contributions and conclude the paper.

2. The Composition Structures

 As we know, the dynamism and unpredictability of the
business applications and Web environment require that
the Web services composition have the abil ity to adapt to
unknown situations. We believe that some form of
enhanced features from reflection and process modeling
will provide the right ingredients to enable adaptabil ity.
 Reflection [5] is the act of revealing a system’s
implementation, and allowing changes to that
implementation in a controlled manner. By inspecting
internal aspects of a system, its competence may be
improved, either through better performance or greater
adaptabil ity. The concepts of reflection have been applied
in many areas of computing and information technology,
where it has been employed as a means of building up
flexible and extensible computer systems – ones that can
evolve and adapt to changing circumstances and
expectations [6]. In this paper we apply to the concept of
reflection and inspect the internal aspects of a composite
service, which includes two main parts: the structure of a

composite service and the internal dependencies of a
composite service. Correspondingly, we come up with our
solutions in order to tackling these two parts. We believe
our solutions tackle the most critical aspects of a
composite service, and satisfy the requirements of the
flexibil ity, adaptability and reliabil ity for a composite
service.
 During the process modeling of a composite service
there is a vital aspect and a hard point that needs to be
firstly tackled: that is how to deal with the joints among the
constituent services. Here we would like to propose our
notions: composition structures based on the concept of
task structures. As we know, a composite Web service
involves the completion of several Web services. These
several services need coordinate to complete a specific
task. This kind of coordination is actually the coordination
of several tasks, which has the process style. For example,
Flight-booking service need to be finished before
Accommodation-booking service commences. After
finishing Accommodation-booking service and
Attraction-searching service, the composite service needs
to choose one service between Bicycle-booking service
and Car-rental-booking service. After that,
Events-planning service takes place. Processes focus on
the coordination of tasks. Any process specification
language should at least be capable of capturing sequential
composition, moments of choice, parallel composition,
and various forms of synchronization. Task Structures [7]
is notions and notations for describing the various tasks
within a process, and their interdependencies. In this paper
we enhance the notions and notations of task structures
specifically for the Web services composition. Here we
only apply to these enhanced notions and notations to
generate and model the structure of a composite Web
service, and use another solution to specify the
inter-dependencies among the constituent services of a
composite Web service. We believe this kind of treatment
is more reasonable, because the composing structure and
the dynamic inter-dependencies of a composite Web
service are two different facets of a composite service and
have their own characteristics. It deserves to obtain the
different treatments and apply to the different approaches
and solutions.
 Thus the composing structure of a composite Web
service may be composed from one or more of five
particular building blocks, here we call them
“Composition Structures” . (Naturally, we might
introduce more composition structures similar to process
patterns in workflow research community [8,9,10].
However, here our purpose is to generate and model the
structure of the coordination of several Web services,
which is different from modeling the control structure of
workflow, although they have some similarities. After all ,
the composing structure of a composite service is different
from the control structure of workflow. Moreover,
over-introducing the building blocks might lose flexibili ty
and manageability for a composite service. This aspect of
research is beyond the scope of this paper).
 Sequential-composition: After Service A has been

performed, only Service B wil l be performed. This is
called Sequential-composition between two services.
 AND-split: After Service A has been performed, both
Service B and Service C will be performed. Service A is
said to trigger the other services.
 OR-split: After Service A has been performed, either B
or C, but not both, will be performed. This is called a
decision point.
 AND-join: Service C cannot be performed until both A
and B have been performed. This form of join is called a
synchronizer.
 OR-join: Service C will be performed whenever either
A or B, but not both, have been performed. This form of
join is called a discriminator.
 The above notations are not limited to relations among
three services, and they might be extended more than three
services. For example, Service A can trigger more than
two parallel services at the same time.
 Please note the above notations are not only notations,
but also they are notions, since they express a kind of
semantics and satisfy the requirements of process
specification language which captures sequential
composition, moments of choice, parallel composition,
and various forms of synchronization.

3. Specifying the Internal Dependencies of a
Composite Service

3.1 Specification Approach

 In terms of the composition structures notions, the
reliable structure of a composite service can be generated
and formed. In order to describe the dynamic
dependencies of a composite service, and there is the
second part of work which needs to be done. We need to
clearly specify two vital inter-dependencies of a composite
service: the notification dependency and the
dataflow dependency. The notification dependency
means that there exists the sequential relation between two
services or two services structures. For example, Service 2
can’ t be started if Service 1 has not completed; the
dataflow dependency means that there exist the
data-flowing relations between two services or two
services structures. For example, Service 2 needs the data
of Service 1; Accommodation-booking service needs the
data of the Flight-booking service such as the date,
location and the number of clients, etc. We assume that
every dataflow dependency also has the notification
dependency.

 Notification Dependencies. Each notification
dependency takes the form:

Notification from { …}

For example, Service 2 can’t be started until Service 1 is
successfully completed.

Service 2

{
 Notification from
 { Service 1 if Service 1 success}
 }

Dataflow dependencies. If we use the textual
representation in the dataflow dependencies, each
dataflow dependency takes the following form:

Service 2
{
 Inputs { input-X from
 { output-x of Service 1} ;
 input-Y from
 { ….} ;
 …
}

For example, the input-A of Service 2 needs the output-a
of Service 1; and the input-B of Service 2 needs the
output-b of Service 1.

Service 2
 {
 Inputs{ input-A from
 { output-a of Service 1} ;
 input-B from
 { output-b of Service 1}
 }
 }

3.2 Example

 Now that we have the specification mechanism to
specify the composing structure and dynamic
inter-dependencies of a composite service, a complete
specification of a composite service can be formed. If we
take the “Travel Solutions” example, its complete textual
specification can be written in the following:

Composite-service “Travel Solutions”
 {
 AND-split from beginning splitting to Flight-booking
service and Attraction-searching service
 {
 Service Flight-booking
 Inputs { date; location; the quantity of the
tickets; …} ,
 Service Accommodation-booking
 Notification from { Service Flight-booking if it is
successful}
 Inputs
 { outputs (date; location; the quantity of the
tickets; …) of Flight-booking service}
 } ;
 Service Attraction-searching
 Inputs { location, …} ,
 AND-join from Accommodation-booking service and
Attraction-searching service to a decision point (OR-split),

 OR-split from Accommodation-booking service and
Attraction-searching service to Bicycle-booking service or
Car-rental-booking service,
 Service Bicycle-booking
 Notification from
{ Service Accommodation-booking and Service
Attraction-searching if they are successful}
 Inputs{ …} ;
 Service Car-rental-booking
 Notification from
 { Service Accommodation-booking and Service
Attraction-searching if they are successful}
 Inputs{ …} ,
OR-join from Bicycle-booking service or
Car-rental-booking service to Events-planning service,
Service Events-planning
 Notification from
 { Service Bicycle-booking or Service
car-rental-booking if one of them is successful}
 Inputs{ outputs(date;location;…) of Attraction-searching
service}
}

Similarly, the above textual specification also can be
drawn in a graphical manner with the textual annotations.
Because of the limitation of space, here we will not draw
the complete graphical specification blueprint.

4. Related Work

 Most of the work in service composition has focused on
using workflows either as a engine for distributed activity
co-ordination or as a tool to model and define service
composition. Representative work is described in [14]
where the authors discuss the development of a platform
specifying and enacting composite services in the context
of a workflow engine. The eFlow system provides a
number of features that support service specification and
management, including a simple composition language,
events and exception handling.
 The work related to Web services and co-ordination or
composabili ty can be found in [25]. In this paper the
authors examine the potential of using coordination
technology to model electronic business activities and
illustrate the benefits of this approach.
 Our work in this paper is different from the
above-mentioned work. Our main idea is to separate the
design and implementation of a composite service, and
concentrate on the research of composition logic for the
composite services. Correspondingly, we come up with our
sound solutions for the service composition. We believe
the advantages of this way are to greatly facili tate
discovery of Web services, since the generated structure by
using our approaches maps the services we need to
discover. Moreover it possesses more flexibility and
adaptabil ity, and the structure of a composite service may
be easily changed and adapted according to the user’s
realistic needs. Our work satisfies and supports the main
requirements of a flexible composite software system such

as modularity, interoperability, flexibil ity, adaptabili ty and
fault-tolerance and dynamic reconfiguration in the
dynamic Web environments of business applications. Our
concrete approaches are related to the following research
fields:
 Generic process models: In [27], each workflow schema
is associated with a family of variants. A particular task in
the schema may be viewed as the root of an extensible
class hierarchy, with the hierarchy expressing allowable
instantiations of that particular task.
 Workflow pattern: In the work of [21], a systematic
overview of process control constructors is provided. The
patterns address business requirements in an imperative
workflow style, but are independent of any particular
workflow language. They encapsulate commonly used
forms of complex workflow functionali ty.
 Architecture Description Languages: Software
architecture specification is intended to describe the
structure of the components of a software system, their
interrelationships, and principles and guidelines governing
their design and evolution [15, 16, 17]. It is common to
model an application as a set of components
communicating through connectors. Typically, an
application is composed from components, where a
component provides services to other components. A
component within an application can be either a simple
component, or composed out of a group of other
components. The components provide and obtain service
through ports. The interaction between ports can take
many forms, for example, buffered message passing,
one-to-many event dissemination, or synchronous
request-reply communication. Currently available ADLs
however do not capture the computation unit structure of a
composite application. This requires describing the
structure and inter-dependencies of an application. Our
approaches capture this structure in terms of composition
structures notations and their dependencies by specifying
input and output requirements. Another advantage of
describing composite structure in terms of services is that
it directly enables application level fault tolerance
requirements to be specified and controlled.

5. Concluding Remarks and Future Research
Directions

 In this paper we come up with our sound solutions for
the composition logic of the composite services, which is
referred to the way a composite service is constructed in
terms of its constituent services. Our ideas are to separate
the design and implementation phases of a composite
service, and concentrate on the research of composition
logic of the composite services. The advantages of this
treatment are to make the composite services have more
flexibil ity and adaptability, which greatly facili tates the
discovery of the constituent services, since the structure of
a composite service we generate maps the discovery of its
constituent services. Our concrete approaches are that we
firstly propose well-defined notions “composition
structures” to represent the joints among the constituent

services and generate the reliable structure of a composite
service, and then we provide a specification mechanism to
clearly specify the internal dependencies of a composite
service in terms of the notification and dataflow
dependencies. Our work is motivated by the main
requirements of a flexible composite software system such
as modularity, interoperability, flexibil ity, adaptabili ty and
fault-tolerance and dynamic reconfiguration in the
dynamic Web environments of business applications. Our
solutions and specification mechanisms satisfy these
requirements and support these properties. The concrete
reasons are summarized in the following:

• We view every service as an independent
computing unit. Our notions, notations and
specification mechanism are applied to easily
generate the structure of the composite
computing unit (or composition structure or
service) and clearly specify the inter-relations of
these constituent computing units. So our
solutions support the modularity and
interoperability of the composite system.

• Our “composition structures” notions and
notations provide a kind of flexible, adaptable
mechanism to address the composition logic of
the composite system, which means the structure
of a composite service can be easily and reliably
adapted if the users’ needs are changed.

• Our solutions provide a reliable specification
mechanism for the implementation of a
composite service. We believe only we have the
clear specification of a composite service in an
abstract manner, then it can support the properties
of fault-tolerance and dynamic reconfiguration
for a long running composite service on the Web.

 Based on our above work, future work might include
two research directions: one is to continue to research the
composition logic of Web services, specifically address the
composition logic in a more formal way; another is to
develop the corresponding application tools or languages
for our specifications of the composite services.

References

[1] F. Casati, M. Sayal, and M-C Shan. Developing E-Services
for Composing E-Services. Procs. 13th CaiSE conference,
Switzerland, 2001.

[2] C. Bussler. The Role of B2B Protocols in Inter-Enterprise
Process Execution. Procs. 2nd VLDB-TES Workshop, Rome,
2001.

[3] H. Kuno, M. Lemon, A. Karp, and D. Beringer.
Conversations + Interface = Business Logic. Procs. 2nd
VLDB-TSE Workshop, Rome, 2001.

[4] Web Service Definition Language.
http://www.w3.org/TR/wsdl

[5] Kiczales, G., des Rivieres, J. & Bobrow, D.G., The Art of
Metaobject Protocol, The MIT Press, Cambridge, Mass., USA.
1991.

[6] Maes, P., “Computational Reflection” , The Knowledge
Engineering Review 3(1), 1-19. 1988.

[7] Hofstede, A. t. & Nieuwland, E. “Task Structure Semantics
through Process Algebra”, Software Engineering Journal
8(1),1993.

[8] W.M.P. van der Aalst, Don’t go with the flow: Web services
composition standards exposed. Web Services-Been there done
that? Trends of Controversies. Jan/Feb 2003 issue of IEEE
Intelligent Systems.

[9] W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and P.
Wohed, Pattern Based Analysis of BPML (WSCI), QUT
Technical report, FIT-TR-2002-05, Queensland University of
Technology, Brisbane, 2002.

[10] W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and
P. Wohed, Pattern Based Analysis of BPEL4WS, QUT
Technical report, FIT-TR-2002-04, Queensland University of
Technology, Brisbane, 2002.

[11] B. Benatallah, M. Dumas, M.C.Fauvet and H.Y.Paik,
Self-Coorinated and Self-Traced Composite Services with
Dynamic Provider Selection. UNSW-CSE-TR-0108, The
University of New South Wales, Sydney, 2001.

[12] W.M.P van der Aalst, A.P.Barros, A.H.M. ter Hofstede and
B. Kiepuszewski. Advanced workflow patterns. In Proc. of the
5th IFCIS Int. Conference on Cooperative Information Systems,
Eilat, Israel, September 2000. Springer Verlag.

[13] Buschmann, F., Meunier, R., Rohnnert, H., Sommerlad, P.
& Stal, M. (1996), Pattern-Oriented Software Architecture – A
System of Patterns, Wiley and Sons Ltd., USA.

[14] F.Casati, S. Ilnicki, L.-J.Jin, V. krishnamoorthy, and M.-C.
Shan. Adaptive and dynamic service composition in eFlow. In
Proc. Of the International. Conference on Advanced Information
Systems Engineering (CaiSE), Stockholm, Sweden, June 2000.
Springer Verlag.

[15] F. Ranno, S.M. Wheater and S.K. Shivastava, “A System for
Specifying and Co-ordinating the Execution of Reliable
Distributed Applications”, Conference on Distributed
Applications and Interoperable Systems (DAIS’97), Germany,

1997.

[16] J. Magee, N. Dulay, S. Eisenbach and J. Kramer,
“Specifying Distributed Software Architectures” , Proceedings of
the 5th European Software Engineering Conference, Barcelona,
1995.

[17] J. Magee and J. Kramer, “Dynamic Structure in Software
Architectures” , SIGSOFT 96, ACM Software Engineering Notes,
Vol 21 No. 6, November 1996.

[18] BPML.org. Business Process Modeling Language (BPML).
Accessed from www.bpml.org, 2002.

[19] BPML.org. Business Process Modeling Notation (BPMN),
Working Draft. Accessed from www.bpmi.org, 2002.

[20] Microsoft Corporation. Xlang web services for business
design. Accessed from www.gotdotnet.com, 2001.

[21] Aalst, W.v.d., Barros, A., Hofstede, A.t.& Kiepuszewski, B.
(2000), Workflow patterns, Technical reports, Queensland
University of Technology.

[22] B. Benatallah, M. Dumas, M-C. Fauvet, F.A.Rabhi.
Towards Patterns of Web Services Composition. Technical
Report, University of New South Wales, Sydney.
UNSW-CSE-TR-0111. November 2001.

[23] B. Benatallah, M. Dumas, Q.Z. Sheng, and A.H.H. Ngu.
Declarative Composition and Peer-to-Peer Provisioning of
Dynamic Web Services. In Proc. Of the International Conference
on Data Engineering, San Jose, USA, February 2002.

[24] Curbera F., Nagy W. and Weerawarana S. 2001. Web
Services: Why and How?. http://researchweb.watson.ibm.com/

[25] G.A. Papadopoulos and F. Arbab. Modell ing Electronic
Commerce Activities Using Control-Driven Coordination, Ninth
International Workshop on Database and Expert Systems
Applications, Vienna, Austria, 1998, IEEE Press.

[26] J. Yang and P. Papazoglou. Web Component: A Substrate
for Web Service Reuse and Composition. In Proceeding of
CAISE’02, 2002.

[27] Aalst, W.v.d., How to Handle Dynamic Change and Capture
Management Information, in “Proceedings of the 4th IFCIS
International Conference on Cooperative Information Systems”,
pp. 115-126. 1999.

