

The Role of Components of Data Flow Diagram in Software Size

Simon, Iok Kuan WU
Faculty of Business Administration

University of Macau
Macau

Tel.: (853) 3974749
Fax: (853) 838320

E-mail: simonwu@umac.mo

Abstract

 Managing and estimating a good software is not an
easy task. Because software estimation activities are
concerned not only with time and effort scheduling, but
also with specifying work activities, skill levels and
scheduling of necessary resources. With duration, effort
and other factors overlooked, poor reliability and
functionality of software may occur. Furthermore,
inaccurate estimation will lead to high pressure for the
working team, and poor quality of final development. Hence,
designing a right software metric is an imp ortant task. Due
to these reasons, a software size model is being developed
using a sample consisting of 122 student projects. This
model takes several advantages: (1) there tends to be fewer
counting problems than other software metrics, because
this model is based upon simple counts; (2) the predicted
software projects were calibrated to specific local
environments rather than being based upon industry
weights; (3) basic size components can be identified easily
at the early stage of the development life cycle; (4) the
model provides clues to project designers in planning and
scheduling the development of new information systems.

1. Introduction

 Software size models have become quite sophisticated
since their introduction during the early 1970s. At that time,
software development cost models were only based on a
single parameter such as program size. These models were
not accurate and reliable, as they were usually developed
from a limited database, both in number of programs and a
variety of applications. Furthermore, according to Boehm
[2], these early models varied widely in their underlying
assumptions and definitions of size, so the cost equations
differed substantially.
 Software size is a key factor to all software cost models,
however, as late as the early 1980s, a few size estimation
models were developed. Bozoki [4] developed a well-
known expert judgment sizing model, a variant of which is
now incorporated into the SEER family of models as SEER-
SSM. PRICE Systems added a parametric sizing model.
This model considers about twenty factors, including size
calibration factor to estimate lines of code (LOC).
Unfortunately, LOC is only restricted to using one
particular language to estimate the software size.
 Upon the introduction of Function Points Analysis by
Albrecht [1], it is used to measure the functionality
delivered by software and a measure about the
functionality that the software delivers to the users [7] [13].
An extension of Albrecht method is known as Mark II

function points [13]. This model considers a system
consisting of some logical transactions. Each transaction
consists of inputs that are received, data stores that are
referenced, updated and outputs that are generated. Based
on the number of transactions in an information system,
each transaction is individually sized and the total counts
are obtained toward the overall information processing size
for the whole system. In both of these two metrics,
although significant effort has been devoted to
strengthening the counting practices, but questions of
subjectivity and measure interdependence remains.
Function point method is a complex process that required a
degree of training [11] [3]. While Mark II function point
uses industry average weights as a measurement for
construction. It is unclear how representative the systems
contributing to the average are, and how stable the
averages are over time. In addition, it is also unclear such
weights are appropriate for new systems as well as system
enhancements [12].
 A similar approach, developed by Verner et al. [15],
which is a bottom-up method in which the final counts of
software are determined by summing up all individual
components. The results of the method were very
significant, but the sample data is restricted to only one
system. This implies the model may not be generalized to
other environments.

2. Research model

 The objective of the study is to explore the possibility of
developing a software metric using 4GL software projects.
The model is simple and easy in estimating software size. It
can be applicable to other software projects within the
same environment as well. In the study, two sets of project
specifications are examined. The first set is user
specification, and the second set is program size in terms of
executable statements (size).

2.1 User specification

 The user specification is Data Flow Diagrams (DFDs)
from which the software size components are extracted
directly. This approach is totally different from those
based on LOC and other software metrics, because the
software size is predicted and estimated using simple
counts (components) at the early stage of the development
life cycle. Based on the details of DFDs, the software size
components are extracted directly. Before studying the
details of DFDs about the software projects, the context
diagram is evaluated first. Walking through the context
diagram, it shows how software projects are modeled and

interact with other modules/systems as a whole if any.
However, context diagram is not detailed enough for
representing the whole project’s data movement, because
it lays out only the sources/sinks and a single process with
a generic name representing the entire software. There are
no data stores and other components identified at this
level. So DFDs are studied for understanding the entire
software project level by level. By studying DFDs, project
designers have better understanding about the data
movement throughout a business process or an
information system that the data undergoes.
 From the first level of DFDs, it shows the main
processing activities of the entire software project, such as
processes are shown and data stores are added at this
level. It is probably the most informative level compared to
context diagram, because the context diagram gives project
designers little information about what the software
functions. Before proceeding with an explosion of next
level of DFDs, project designers must be aware of the
balance of the child diagram against the parent. To do so,
they make sure both the ‘data in’ at the child level is
identical with or adds up to the ‘data in’ at the parent level
and that the ‘data out’ at the child level is identical with or
adds up to the ‘data out’ at the parent level. The data
pass between the processes on the child DFDs do not
enter into this evaluation because they are internal to the
process at the parent level.
 After completing the level balancing, project designers
explore each process on the balanced diagram into its own
DFD. However, input and output requirements remain
constant at that level but the data stores and sources are
changed. If there are more details about each data process
required, the next level explosion is continued by
determining the next lower level’s process until it cannot
be subdivided, or it cannot be broken down to a point
where the bubbles have a single input data flow and a
single output data flow. This level is considered
functionally primitive [6], because it cannot be further
partitioned into subordinate components or the lowest
levels have been reached [14] [6] [9] [8], so that the
partitioning process is complete.

2.1.1 Calculation of software size components

 When the entire software project is broken down into
the functional primitives, we are in a better position to
extract and count the size components. Before the
components are counted toward the final size of a software
project, it is essential to evaluate all DFDs carefully by
determining their correctness. Because numerous errors,
omissions, and inconsistencies can occur for several
reasons, such as forgetting to include a data flow, making
an arrowhead in the wrong direction, incorrect labeling

processes and/or data flow, or creating unbalanced
decomposition in child diagrams etc. If the error checking
procedure is complete, the process of identifying the size
components can be started. The followings are the
counting procedures for identifying the software size
components.

(a) Input entity (in_enty)

 The input entity refers to those input screens enter the
boundary of an interface of a software project, or those are
directly connected to different processes/modules by data
flows. An input screen can be used for the creation of a
new record, or can be used to change some existing data
items from a database, or to delete an existing record. In
the study, different functions of input screens are counted
toward the size components. For those input screens that
may not require any processing logic at all, such as a start
menu or a query input screen. They are summed together
to represent one input entity.

(b) Data flow (data_flow)

 Data flows are those arrows flowing within each
functional primitive. These arrows are those arrive at the
processes/modules from input entities, or those enter from
one process to another, or to data stores, or those leave
from data stores to processes, and those depart from
processes to output entities. Each occurrence of data flow
within all functional primitives is counted toward the size.

(c) Process

 Process is a transformation process for manipulating the
incoming data and generating output according to the
program statements given. The process component is
important to each functional primitive, as it reflects the
complexity of the module of the software. Thus, the higher
the mo dule complexity, the more interactions are required
between input and output activities. In each functional
primitive, the functions of the process are varied, such as
updating the input data, verifying the existence of an entity
(record) or preparing the outputs etc. All processes in each
functional primitive are counted toward the size.

(d) Data_store

 Data stores are the permanent or semi-permanent places
for storing transaction data, they include the master files,
transaction files, table files or any other semi-permanent
files. The functions of the data stores are used either for
looking up or updating purpose, depending on the

transaction processing required. If the data stores are used
for looking up purpose, the counting of these data stores
are summed together for representing only one data store.
Since they are not required for transaction/data processing.
However, if the files are used for updating purpose, such as
changing the data items or deleting a record, then the data
stores are counted individually. As they require different
logic for transaction processing.

(e) Interaction

 The number of interactions counted toward the
software size including the data or control information
passed between processes. The counting of interaction
between two processes can be one way or two ways. In
other words, in a functional primitive, a process acts as a
calling process, while another one acts as a called process.
In between, when a calling process only directs a called
process to perform a specific job by passing either data or
control information or both at the same time, one way of
interaction is counted. Otherwise, when the called process
finishes the execution, it is required to pass the processed
information to the calling process, two ways of interactions
are counted.

(f) Output entity (out_enty)

 For each report/output screen that leaves from the
boundary of a module/process after processing, it is
counted once if different processing logic is required. On
the other hand, if both output screen and printed report are
the same length and having the same output data items,
only one output entity is counted toward the final size.
However, the following outputs are summed together as an
output entity and counted toward the final size of the
software project:

i. A selection of menu screen: a displayed main menu

offers several choices of selection are summed
together, because they required no processing logic;

ii. A starting output screen: like the initialization of
conversational processing which leads the user to
execute different jobs;

iii. A query language output: a displayed message/output
screen does not require any processing logic before it
is retrieved.

 After extracting the size components from all functional
primitives, they all are added together and put into the
equation for running multiple regression. The complete
picture of the model using the size components identified
above is presented in Figure 1.

2.2 Size

 Size is the measure for expressing how large of the
software is in terms of complexity. It is considered as a
dependent variable. In this study, the size is referred to the
total number of source statements run-on lines with a
continuation indicator as a single statement. It excludes
blank and comment lines of code, and other job control
languages.

3. General data characteristics

 All software projects in this study comprising the
sample were built over a period of ten years by groups of
senior students . Every software project was built to satisfy
the real requirements of the external clients, normally most
of the clients are from small medium enterprises. Before
each project's work activity was carried out by a group of
students, they were required to use a prototyping process
for development, meeting with their clients on around three
occasions over nine-week development period. This
process is to ensure that the projects being developed
would be satisfied and accepted by the clients. The
projects addressed transaction processing, data retrieval
and reporting, and file maintenance activities performed by
the organizations. Under the software process employed, a
software proposal outlining the functionality to be
delivered was signed off by the client after one week. On
system delivery, the client performed an acceptance test
and system review. All projects satisfied the requirements
of both the clients, as evidenced by the reviews, and the
course administrators, as indicated by the marks awarded
(although marks varied over the sample). A wide variety of
software projects were constructed over the period. In total,
more than seventy distinct working software projects were
developed and reviewed.
 Although the developers were students, they were in
the final segment of their third or fourth year degree.
Almost all of them completing their degrees went on to
hold development positions with three months of the
completion of the projects in the sample. More importantly,
the software projects developed were functionality sound,
providing an actual working solution to an actual client
system. The students all had an equivalent amount of
previous experience with the tools and the methodology
used.
 All software projects were implemented using the same
tool, the Cogos 4GL Powerhouse. The software projects
were all of the same generic class, such as transaction
oriented data processing and retrieval applications. This
commonality is advantageous in these factors that can be
considered as constant in the system analysis, a condition
not often encountered in software size research. When

they vary, factors such as these can clearly have an impact
on software size. Given the potential contributors may be
treated as constant, the degree of confidence adopted in
regard to any size relationships supported by the data will
consequently be greater.

 * I * PS * IN * DF * DS * O

Figure 1- Size estimation using components of DFDs

LOC = Wi*I+ Wps*PS+ Win*IN+Wdf*DF+Wds*DS+ Wo*O

Where: Wi is the coefficient of an input entity
 I is the number of input entities
 Wps is the coefficient of a process
 PS is the number of processes
 Win is the coefficient of an interaction
 In is the number of interactions

 Wdf is the coefficient of a data flow
 DF is the number of data flows
 Wds is the coefficient of a data store
 DS is the number of data stores

Wo is the coefficient of an output entity
O is the number of output entities

4. Research methodology

 The whole sample of 122 software projects is divided
into two subsets of data randomly. The larger subset is
called main sample consisting of two third of software
projects. This subset is used for primary modeling analysis
and prediction. The smaller subset called holdout sample

input
entities

process
es

Inter-
actions

data
flows

 data
stores

output
entities

DFDs

LOC

consisting of one third of software projects. This subset is
used for validation of models developed previously using
the main sample. In the study, a linear multiple regression
analysis is applied for estimating and predicting the
software size.
 To evaluate the accuracy of regression model, the mean
magnitude of relative error (MMRE) and the threshold
oriented predicted measure are used. The accuracy of a
project estimate is measured using the magnitude of
relative error (MRE). The MRE is calculated for a project
using the following formula:

MRE = 100 | (ACT - EST) / ACT |

where MRE is the magnitude of relative error, EST is the
value of estimated size of a software project (in terms of
LOC) and ACT is the value of actual size of a software
project (in terms of LOC). Thus, the smaller the value of
MRE, the better the prediction. But one important thing is
that the positive and negative errors will not cancel each
other out. So that the larger the value of MRE, the worse
the prediction. Therefore, in an attempt to produce on
average a good set of predictions, MMRE is calculated
using the following formula:

MMRE = (1/n) ∑i MREi

 However, even the MMRE is small, there may be one or
more predictions that can be very bad. So a second
measure is used to examine the cumulative frequency of

MRE for a specific error level. We use the measure called
PRED (p) or Prediction at Level p suggested by Conte et al.
[5]. If k is the number of projects in a set of n projects
whose MRE ≤ p, the PRED (p) = k/p. Following the
suggestion of Conte et al. [5], we report the PRED (.25)
level for the estimation method. A value of PRED (.25) ≥
0.75 is considered desirable for size estimation.

5. Correlation analysis

 Given the small degree of skewness and influential
outliers are identified in some of the independent variables,
the remedying steps are performed if necessary. It is
essential to assess the independent variables whether they
meet the basic assumptions, so as to identify any
potentially useful (linear) relationships between dependent
variable (size) and independent variables, as well as among
independent variables themselves. After remedying the
basic violations for some of independent variables, the
stepwise multiple regression analysis is performed. The
detailed results are presented in Table 1. Examination of the
correlation matrix indicating there is a strong correlation
results between dependent and independent variables.
Since our focus is only to identify general patterns within
the entire set of observations, the individual observations
should not be omitted as they may strongly influence the
regression results. Therefore, we need to identify them and
access their impact if necessary.

Table 1 - Correlation coefficients
Variable Size In_enty Out_enty Interaction Process Data_flow Data_store

Size 1.000 - - - - - -
In_enty .833 1.000 - - - - -
Out_enty .596 .491 1.000 - - - -
Interaction .495 .415 .465 1.000 - - -
Process .735 .574 .415 .310 1.000 - -
Data_flow .498 .373 .527 .346 .407 1.000 -
Data_store .738 .574 .500 .429 .481 .394 1.000
All are significant at 0.01

 In Table 2, it indicates the model summary of selected
variables before and after removing 11 influential
observations. Examination of correlation matrix shows that
there is not only close relationship between dependent and
independent variables, but also improving both values of

adjusted R2 and the standard error of the estimate.
Therefore, we believe the influential observations identified
previously have tremendous impact on final regression
results. Thus, we accept the selected variables listed in the
‘after’ column for inclusion in the regression model.

Table 2 - Comparison of model summary of selected variables
Before After Variable

R2 Adjusted
 R2

Std. Error of
the Estimate

R2 Adjusted
R2

Std. Error of
 the Estimate

In_enty .501 .494 213.59 .693 .689 200.43
Process .757 .750 241.25 .794 .789 195.64
Data_store .826 .819 230.18 .856 .851 187.73
Out_enty .845 .836 200.95 .866 .859 170.01

 From Table 1 and Table 2, the dependent variable is fully
correlated to all independent variables. In other words, the
independent variables have varying degree of effect on the
dependent variable. Among the independent variables,
IN_ENTY is mostly and highly correlated with SIZE. It is
firstly considered for inclusion into the regression equation.
According to the results presented in Table 2, the adjusted
R2 of IN_ENTY is 0.689 (which is about 69 %). By this value,
it explains about 69% of effect of IN_ENTY to the SIZE.
This is in the expected direction. Our concern is to estimate
the size of software projects as early as possible using
known variables. In system analysis stage of the
development life cycle, in_enty is relatively easy to identify
from each module/process using DFDs. More in_enty
implies more time and effort are spent in designing and
constructing the software. Therefore, IN_ENTY has a major
effect to the size of software projects and it is in the
expected direction.
 The multiple R value has increased with the addition of
the PROCESS variable by 7.2%. While the adjusted R2
value has increased by 0.1. Indicating with the inclusion of
this variable, it adds about 10% to the validity of SIZE
which the software project has explained. This is true since
the size of software projects can increase accordingly when
more PROCESS is involved for processing. At the system
analysis phase of the development life cycle, the number of
PROCESS could be easily determined using DFDs. In a
complete transaction, process is one of the components
interacting with input and output. More PROCESS implies
higher software complexity and complicated interactions
between components of software projects. Therefore, the
more the number of PROCESS involved for processing, the
higher the complexity of the system interface.
 The multiple R value is increased with the addition of
DATA_STORE variable by 3.2%. While the adjusted R2

has increased by 0.062, it implies with the inclusion of this
variable, adding 6.2% to the validity of SIZE which the
software has explained. The same result achieved was very

significant in a study conducted by Itakura et al. [10]. Its R2
achieved was 0.8. In another study reported by June et al.
[14], the R2 achieved was 0.98 which is the highest
correlation coefficient as compared to other independent
variables under the same study.
 In every module, the access to data store is necessary.
The access to data store could be a simple query, addition,
deletion or changing process. The influence of access to
data store to size of software projects depends on what
kind of function it performs. The influence of access to data
store using a simple query would be less compare to the
function of adding new records to the same data store. The
simple query function does not require higher complex
steps in operations, while addition function requires more
interactions if more data stores are involved.
 Finally, with the inclusion of OUT_ENTY, the multiple R
value is increased by 0.3%. While the adjusted R2 has
increased 0.008, it implies that with the consideration of this
variable. It adds 0.8% to the validity of SIZE which the
software has explained. The explanatory power of this
variable is small, it contributes less than 10% to the SIZE.
Because producing the details of OUT_ENTY is fully
depending on IN_ENTY, PROCESS and DATA_STORE.
The output of the report is generated directly by retrieving
from DATA_STORE, and the level of complexity required
for producing a report relies on the design of process.
Therefore, the portion of effect to size of software projects
by OUT_ENTY is already explained by both PROCESS and
DATA_STORE.
 Among the independent variables, DATA_FLOW is the
first one to reject due to insignificant effect to the size. As
pointed out previously, data flow is used to connect
components of DFDs showing the connections between
components in functional primitives. After examination of
data flow in DFDs, a data flow shows where the next
process will be taken place after finishing the previous one,
or where the next destination will be for retrieving the data
from. Even in a large software project, it does not imply

that more designing effort is required accordingly, but from
the occurrence of data flows in the software project, we can
only know how the DFDs components are connected. If
there are many data flows in the software projects, it means
there are more other DFDs components are connected
accordingly. However, since data flows don’t reflect
processing in the functional primitives. Therefore, the
variable DATA_FLOW has no impact to the size of
software project and is rejected.
 For INTERACTION variable, some detailed processing
steps may not be known to system designers at the system
analysis stage of the development life cycle, especially
when comp lexity of software projects is large and complex.
At the early stage, we may not be very easy to investigate
how DFDs components interact with each other. DFDs
only show data movement from one state to another within
an entire software project. It would not show the logic or
complexity required in a module, even project designers
have ideas about how modules interact with one another
by passing data or control information from one to another.
These ideas could be implemented using other
programming techniques, for instance, structure chart or
Warnier-Orr Diagram etc. Therefore, the variable
INTERACTION is rejected.
 With the completed model regression estimation, the
regression variate specified, and the diagnostic tests that
confirm the appropriateness of the results administered, we
can now examine the predictive equation, which includes
IN_ENTY, PROCESS, DATA_STORE and OUT_ENTY.
The predictive equation is written as follows:

Y = -2008.689 + 37.330 (IN_ENTY) + 253.428
(LOG(PROCESS)) + 207.779 (LOG(DATA_STORE)) + 7.743
(SQRT(OUT_ENTY))

where Y is the dependent variable measured in thousands
of LOC, IN_ENTY is the number of input entities, PROCESS
is the number of processes after taking logarithms,
DATA_STORE is the number of data stores after taking
logarithms, and OUT_ENTY is the number of output
entities after taking square root. By using this equation,
the expected thousands of LOC can be calculated.

6. Validation

 After developing the model using the main sample, a
validation process is followed using the holdout sample.
Before the estimated size of each software project is
calculated, the independent variables of the holdout sample
are transformed by taking logarithms and other
transformation process if necessary.
 There are some estimation errors introduced when the
software projects were analyzed. The relative errors of

these projects are ± 0.2 but with some minor exceptions. It
looks like a good model when the mean relative errors (.03)
are calculated. A good model will lead to small values of
relative errors and generally to a small mean relative error
[5]. However, since it is possible that large positive relative
errors can be balanced by large negative relative errors, a
small mean relative error may not imply that a model is a
good one. So the magnitude relative error is computed for
each project. Thus, the smaller the value of magnitude
relative error, the better the prediction. Even more
important, positive and negative relation errors do not
balance each other, so that the larger the value of
magnitude relative error, the worse the prediction.
 In order to produce a good set of project predictions,
the mean magnitude relative error (.09) is calculated. The
mean magnitude relative error is evaluated using a set of 36
projects whose mean magnitude relative error is ≤ .25. The
calculated PRED (.25) =.86. That is to say, in this model,
86% of the predictions for the cases in the set fall within
25% of their actual value. Therefore, this model is being
accepted for software size estimation.

7. Conclusion and limitations

 The paper studied the effect of the components of DFDs
in determining the size of software projects. The analysis
indicates the size components are accurate and reliable in
predicting the size of software projects if they are extracted
at the early stage of the development life cycle. Further, it
shows that project managers have better understanding
about planning and controlling the software development
activities before the software projects are developed.
 For project designers, the results of the study provide
several insights for future software projects development.
(1) the size components are easily extracted from DFDs
during system analysis stage. Compared to other software
metrics, development effort and duration are minimized
without waiting until the entire software is fully developed.
(2) the weights are determined after running linear multiple
regression using a large sample, as a result, the weights are
very reliable for representing the effort devoted to software
engineering activities. (3) the model is easier to apply to
similar environment. Since the results of the study are
calibrated from large sample, the model can be generalized
to other similar software projects. (4) the model is very
suitable for both small and medium companies, especially
for those which are lack of experience project designers and
need better management and tighter control at lower cost.
 The results in this study appeared promising. However,
we should be aware of the following limitations. First, the
software projects are small and medium in terms of program
complexity. The results of the model are applicable to the
similar software projects, such as transaction processing,

data retrieval and reporting generation. Second, the
designers in the study are students, the final results of the
model may be different if the software projects are
developed by the experienced programmers. Third, the
model developed in the study specifically emphasized on
data-strong software projects, function-strong and hybrid-
strong software projects may not be appropriate.

References

[1] Albrecht, A. J. “Measuring application development

productivity,” Proceeding of IBM Corp ., 1979, 14-17,
Monterey, AC.

[2] Boehm, B. W. Software engineering economics,
Englewood Cliffs, NJ:Prentice-Hall, 1981.

[3] Bock D. B., & Klepper R. “FP-S: A s implified function
point counting method,” The Journal of Systems
Software, 1992,18,245-254.

[4] Bozoki, G. J. “An expert judgment-based software
sizing model,” ISPA Journal of Parametrics. 1993, 2(1),
65-75.

[5] Conte, S. D., Dunsmore, H. E. & Shen, V. Y. Software
engineering metrics and Models, Menlo Park, CA:
Benjamin Cummings, 1986.

[6] DeMarco, T. Controlling software projects,
Englewood Cliffs , NJ: Yourdon Press, 1982.

[7] Dolado, J. J. “A study of the relationships among
Albrecht and Mark II function points, lines of code
4GL and effort,” The Journal of Systems Software,
1997,37,161-173.

[8] Floyd, C. “A comparative evaluation of system
development methods,” Information Systems Design
Methodologies: Improving the Practice, 1986, 19-54.

[9] Gane, C. P. Data design in structured systems analysis,
In P. Freeman & A. I. Wasserman (Eds.), Tutorial on
Software Design Techniques (4th ed.), 1983, 115-132.

[10] Itakura, M. & Takayanagi, A. “A model for estimating
program s ize and its evaluation,” Proceeding of 6th
International Conference On Software Engineering,
Japan, 1982, 104-109.

[11] Jeffery, D. R. & Low, G. C. “Function points in the
estimation and evaluation of the software processing,”
IEEE Trans. on Software Engineering, 1990, 16,64-71.

[12] Kitchenham, B. A. “The problem with function
points,” IEEE, 1997,29-31.

[13] Symons, C. R. “Function point analysis: difficulties
and improvements ,” IEEE Trans. on Software
Engineering, 1988, 14(1),2-11.

[14] Symons, C. R. Software sizing and estimating: MK II
FPA, 1991, John Wiley.

[15] Verner, J., & Tate, G. “A software size model,” IEEE
Trans. on Software Engineering, 1992, 18(4),265-278.

