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ABSTRACT 

Clustering over categorical attributes is an important yet tough task. In this paper, we present a new algorithm 
K-meansⅡ to extend the famous K-means algorithm which is efficient only on numerical clustering, by using new 
cluster center definitions and new similarity measures. Thus, our algorithm can be used in categorical clustering while 
preserving the efficiency. Experiments on both real-life datasets and synthetic datasets show that the K-meansⅡ 
algorithm can produce high quality results and deserve good scalability at the same time. 
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1. INTRODUCTION 
 
Clustering is a widely used technique in which data 
points are partitioned into groups, in such a way that 
points in the same group, or cluster, are similar, and are 
dissimilar otherwise [1]. Much of the previous work 
focuses on numerical data which can be exploited to 
naturally defined distance functions between points. 
There are many algorithms proved to work quite well 
under numerical conditions, such as K-means [2], and so 
on.  
 
However, much of the data in practice are categorical, 
where attribute values can not be naturally ordered as 
numerical values. Clustering for categorical attributes is 
thus an important task: it is applicable in different 
domains, e.g. an e-business recommender system. Let's 
consider a market basket database in a recommender 
system containing one transaction per customer, each 
transaction containing the set of items purchased by the 
specific customer. The transactions can be viewed as 
tuples with their attributes not numerical but categorical. 
As is shown in [3], we can set the attribute value as True 
if and only if an item is purchased; otherwise, it is False. 
We can cluster over the dataset and get the 
characterizations of each group, which can be used in 
targeted marketing and advertising. The 
characterizations are also effective in predicting buying 
patterns of new customers based on their profiles. 
Another example of categorical attributes may be 
“color” which can get values from the domain {black, 
yellow, white}. Something should be noted, that not all 
values of categorical attributes are of interest in practice 
during clustering. For example, we do not pay much 
attention to attribute value “False” while clustering on 
the market basket database.  
 
Categorical clustering is yet a tough work, because the 
former familiar clustering algorithms for numerical 
attributes cannot be used directly. Fortunately, several 
algorithms have been proposed in this domain. 
 

ROCK [3] is an adaptation of an agglomerative 
hierarchical clustering algorithm. They define "links" as 
the sum of number of common neighbors between two 
tuples, and then optimize the "links" based criterion 
function. We can get good results by using this 
algorithm. However, with the increase of the dataset size, 
scalability will degrade. 
 
K-modes [4, 5] is an algorithm extending the K-means 
algorithm to work for categorical attributes. They define 
a new dissimilarity measure for categorical objects, 
“modes”, instead of means, and then use a 
frequency-based method to update modes in the 
clustering process. It is scalable as the number of 
clusters and the dataset size increases. However, the 
algorithm is unstable because of non-uniqueness of the 
modes. 
 
STIRR [6] is an iterative algorithm based on non-linear 
dynamical systems. Some research shows that the 
known dynamical systems cannot guarantee 
convergence [7]. 
 
There are a few other clustering algorithms trying to 
solve the categorical clustering problem from different 
perspectives, such as CACTUS [8], Squeezer [9], 
COOLCAT [10], and so on. In this paper, we present 
K-meansⅡ, a new clustering algorithm for categorical 
attributes. Similar to K-modes, K-meansⅡ also extends 
K-means to categorical space. It modifies the definitions 
of cluster centers and similarity measures. Like 
K-means, it can achieve both high quality results and 
scalability. 
 
The rest of this paper is organized as follows. In Section 
2, several definitions related to categorical clustering are 
given. Section 3 shows our new algorithm in details. 
Some basic analysis is given in this section as well. In 
Section 4, experimental results on both real-life datasets 
and synthetic datasets are demonstrated. Finally, the 
conclusion is in Section 5. 
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2. DEFINITIONS 
 
In this section, several definitions related to categorical 
clustering are given. Our definitions are quite like those 
in [5]. 
 
Definition 1: Let A1, A2, …, An be n attributes describing 
a space Ω, and D1, D2, …, Dn the domains of the 
attributes respectively. Di is defined as categorical if it is 
finite and unordered, e.g., for any a, b ∈Di, either a=b, 
or a≠b. Ai is then called a categorical attribute. Ω is a 
categorical space if all A1, A2, …, An are categorical. 
 
Definition 2: Ai is called Boolean attribute if Ai is 
categorical and has two different values. For simplicity, 
we often represent Di as {0, 1}. Ω is called a Boolean 
space if all A1, A2, …, An are Boolean. The market basket 
dataset above is a case in point. 
 
Definition 3: Let the dataset D be a set of tuples where 
each tuple nDDDtt ×××∈ ...: 21 . If Ω is a categorical 
space, each data object X in the dataset D can also be 
represented as a conjunction of attribute-value pairs: 

)(...)()( 2211 nn xAxAxA =∩∩=∩= , where xi ∈Di, for 
i=1,2, …, n. For the sake of simplicity, we present X as 
a tuple: nn DDDxxx ×××∈ ...),...,,( 2121 . 
 

3. K-MEANS Ⅱ ALGORITHM 
 
In this section, we introduce a new clustering algorithm 
over categorical space -- K-means Ⅱ, which is named 
after the famous K-means clustering algorithm. Since 
our K-means Ⅱ is similar with K-means, two main 
problems are met in our algorithm as well, which are the 
calculations of the cluster centers and the similarity 
measures between tuples and cluster centers. Therefore, 
we will solve the two problems before putting out our 
new algorithm. 
 
3.1 Cluster Centers 
 
We now define the center of a cluster as follows. Let 
C= {X1, X2, …, Xm} be a cluster of data objects, with 
Xi=(xi,1, xi,2, …, xi,n), for i=1, 2, …, m. Let tj(a) be the 
number of the tuples with their j-th attributes’ value as 
“a” in the cluster. Define Pj(a) as the percentage of a, 
thus Pj(a)= tj(a)/m. Furthermore, let Pj be the 
conjunction of Pj(a), for all a ∈Dj. Finally, we can 
define the cluster center Q as follows:  
 

)P , ,P ,(P Q n21 …=              (1) 
 
3.2 Similarity Measurement 
 
Before we define the similarity between the tuple Xi and 
the cluster center Q, we first define the similarity 
between the j-th attribute of Xi and the j-th attribute of Q 
as: 
 

)( ,, jijji xP=δ                (2) 
 

 
The following definition shows the similarity δi between 
Xi and Q: 
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δi works quite well when all values in Dj (j=1, 2, …, n) 
are of great importance in clustering the dataset. 
However, in practice, we sometimes do not pay much 
attention to some attribute values. As is shown in 
Section I, the attribute value “False” is not of interest to 
us in the market basket. Therefore, we should modify 
the above definitions. 
 
Let Vj be the set of important values of Aj, therefore, 

jj DV ⊆ . Then we define the similarity '
, jiδ  between 

the j-th attribute of Xi and the j-th attribute of Q and its 
weight ji,θ . 
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Thus, we can get the similarity '

iδ  between Xi and 
Q: 
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When Vj=Dj (for j=1, 2, …, n), or in other words, when 
all values in Dj (j=1, 2, …, n) are of great importance in 
clustering the dataset, the two similarity '

iδ  and iδ  
equals. Thus, we can use '

iδ  to replace iδ . Finally, we 
get the function Sim(Xi, Q) to compute the similarity 
between tuple Xi and the cluster center Q as follows: 
 

'),( ii QXSim δ=                  (7) 
 
The above formula Sim(Xi, Q) seems to be quite 
complex and odd. However, it does derive from the 
famous simple match coefficient and Jaccard's 
coefficient* developed to show the similarity for binary 
data. The function Sim(Xi, Q) extends the above two 
                                                        
* The two are coefficients developed for binary data. Let 
a=conjoint presence (1, 1), b=mismatch (1, 0), c=mismatch (0, 
1), and d=conjoint absence (0, 0). Then Simple Matching 
Coefficient= (a+d)/(a+b+c+d). Absence and presence as well 
as matches and mismatches have equal weights in this 
coefficient. Jaccard's Cofficient= a/(a+b+c). Conjoint absence 
(0, 0) is ignored in the coefficient. 
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functions, and can be used not only for binary data. 
 
3.3 Our Algorithm 
 
Our K-means Ⅱ algorithm is similar to the famous 
K-means [2] algorithm. It can also be described in four 
steps. 
 
Step 1: Select k cluster centers randomly. (We may 
choose the first k tuples as the beginning cluster centers) 
 
Step 2: For each tuple Xi, calculate the similarities 
between Xi and Ql, which is Sim(Xi, Ql), for l=1, 2, ..., k. 
Assign Xi to the cluster Cl (from the formal cluster Cl') 
so that the similarity between Xi and Ql is the largest. 
 
Step 3: Calculate the new k cluster centers, one for each 
cluster. Update both Ql and Ql'. 
 
Step 4: Go to Step 2 until no tuple has changed clusters 
after a full cycle test of the whole dataset. Otherwise, 
end. 
 
3.4 Selection of k 
The selection of k plays an important role in the final 
cluster result. To facilitate the selection, we define a 
notion ∆ to show the average similarity of the whole 
dataset. 
 

numQXSim
DX

i
i

∑
∈

=∆ ),(            (8) 

 
 

Q is the center of the cluster which Xi is in, and num is 
the total number of tuples in the dataset. It is not 
surprising that ∆ increases as k increases. If ∆ is too 
small, it indicates that k is not chosen properly, and we 
should increase k. So it seems that we will get accurate 
results if we set k at a high level. However, if k is too 
large, we will not get very good cluster results, either. 
We can use ∆ as an index to select an acceptable k by 
experiments. 
 
3.5 Time Complexity 
 
The time complexity of K-means Ⅱ algorithm depends 
on the size of dataset (num), the number of attributes (n), 
the number of iterations (i), and the number of clusters 
(k). Thus we can get that our algorithm has the 
worst-case time complexity O(num*n*i*k). It shows 
that the time complexity is linear with the size of dataset, 
the number of attributes and the number of clusters. 
Therefore, we can make the conclusion that our 
algorithm deserves good scalability. 
 

4. EXPERIMENTAL RESULTS 
 
In this section, the results about the performance of 
K-means II are demonstrated. We examine the quality of 
the clustering results on real-life datasets, and the 

efficiency on synthetic datasets. Our algorithm is 
implemented in Java. All the experiments are conducted 
on a Pentium III-600 machine with 256M of RAM 
running Windows XP Professional. 
 
4.1 Real-Life Datasets 
 
We experiment our algorithm on two real-life datasets. 
One is the Congressional Voting dataset, and the other is 
the Mushroom dataset, both of which can be obtained 
from the UCI Machine Learning Repository [11]. The 
two datasets are also used in the algorithm ROCK 
which can produce good clustering results [3]. Thus, we 
can compare our K-meansⅡ with ROCK. 
 
Congressional Voting Dataset: It is the United States 
Congressional Voting Records in 1984. Each record 
corresponds to one Congress man's votes on 16 issues. 
Nearly all attributes are Boolean (Yes and No) values, 
and a few contain missing values. A classification label 
of Republican or Democrat is provided with each data 
record. The dataset contains tuples for 168 Republicans 
and 267 Democrats. 
 
Mushroom Dataset: Each tuple in the dataset contains 
information that describes the physical characteristics of 
a single mushroom, with a poisonous or edible label. All 
attributes are categorical. It has 8124 different 
mushroom records, of which 4208 are edible. A few 
contain missing values, as is in Congressional Voting 
Dataset. 
 

Table 1: results for congressional voting dataset 
ROCK K-meansⅡ(k=4) 

No. Rep. Dem. No. Rep. Dem.

1 144 22 1 23 3 

2 5 201 2 140 30 

K-meansⅡ (k=2) 3 1 34 

No. Rep. Dem. 4 4 200 

1 7 220    

2 161 47    

 
As Table 1 illustrates, both ROCK and K-meansⅡ can 
identify clusters with the majority of Republicans or 
Democrats. Due to the elimination of tuples, the sum of 
the sizes of clusters is not equal to 435 in ROCK. 
However, K-meansⅡ does not eliminate any tuples. As 
is suggested in sub-section 3.4, we can increase the 
average similarity Δ by increasing k. Tables 1 also 
shows the results of K-meansⅡ when k = 4. The result 
is quite accurate and encouraging. Therefore, we can 
conclude that K-meansⅡ can produce good clustering 
results as ROCK does. 
 
Table 2 describes the clustering results for Mushroom 
dataset by using ROCK and K-meansⅡ. Nearly all 
clusters found by both algorithms are pure edible or 
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poisonous ones. Exceptions occur in cluster 5 and 10 
(K-meansⅡ), and in cluster 15 (ROCK). It shows that 
both algorithms perform well. 
 

Table 2: results for mushroom dataset 
ROCK 

No. Edible Poisonous No. Edible Poisonous

1 96 0 12 48 0 

2 0 256 13 0 288 
3 704 0 14 192 0 

4 96 0 15 32 72 
5 768 0 16 0 1728 
6 0 192 17 288 0 

7 1728 0 18 0 8 

8 0 32 19 192 0 
9 0 1296 20 16 0 

10 0 8 21 0 36 
11 48 0       

K-meansⅡ(k=27,∆=0.81) 

No. Edible Poisonous No. Edible Poisonous

1 192 0 15 224 0 

2 96 0 16 0 864 
3 288 0 17 0 40 
4 372 0 18 192 0 

5 16 72 19 0 864 
6 276 0 20 324 0 

7 0 675 21 32 0 

8 192 0 22 324 0 
9 0 288 23 432 0 

10 96 8 24 128 0 
11 768 0 25 0 256 

12 0 621 26 160 0 

13 0 192 27 0 36 
14 96 0       

 
Experiments on both datasets show that our algorithm 
can produce accurate clustering results as ROCK does. 
We can conclude that our algorithm can produce high 
quality clusters. 
 
4.2 Synthetic Datasets 
 
In order to test the scalability of our algorithm, we 
experiment with synthetic datasets which are generated 
by using a data generator. We set the number of attribute 
values for each attribute to 5. All possible values are 
produced with (approximately) equal probability. We 
test three scalabilities of the algorithm using these 
datasets. The first one is the scalability of our algorithm 
against the dataset size, the second is the scalability 
against the number of clusters, and the third is the 
scalability against the number of attributes. In Figure 1, 

the dataset size is increased from 10000 to 100000, and 
the numbers of attributes and clusters are fixed to 10 
and 30 respectively. Figure 2 shows the results when 
increasing number of clusters from 10 to 50, and the 
cluster size and the number of attributes are set to 10000 
and 10. In Figure 3, we increase the number of attributes 
from 10 to 40, and we set cluster size at 10000 and the 
number of clusters at 30 fixedly.  
 
These results are very encouraging because they show 
clearly a linear increase in time as the cluster size, the 
number of clusters, and the number of attributes 
increase. They accord with the analysis in sub-section 
3.5. Therefore, we can make the conclusion that our 
algorithm has good scalability with respect to the above 
three dimensions. 
 

 
Figure 1: scalability to dataset size (attributes: 10, 

clusters: 30) 
 

 
Figure 2: scalability to clusters (dataset size: 10000, 

attributes: 10) 
 

 
Figure 3: scalability to attributes (dataset size: 10000, 

clusters: 30) 
 

5. CONCLUSION 
 

Clustering of categorical attributes is an important yet 
difficult task. In this paper, we propose an efficient 
algorithm called K-meansⅡ. Both analysis and 
experiments show that our algorithm can produce high 
quality results and at the same time deserve good 
scalability. 
 
The K-meansⅡ algorithm has made extensions to the 
K-means algorithm by using new cluster center 
definitions and new similarity measures. Thus, the 
K-meansⅡ can be used in categorical clustering while 
preserving its efficiency. The new definition of cluster 
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center can also be used as characteristic descriptions 
which are useful in interpreting clustering results. 
Another advantage is that the algorithm can handle 
attribute values which are not of interest. Thus, the 
algorithm can handle missing values very easily, 
because missing values can be viewed as new attribute 
values which are not of interest while measuring the 
similarity.  
 
For the future work plan, we will revise K-meansⅡ to 
make it more efficient on very large dataset size, for 
examples, datasets with billions of tuples. The extension 
to K-meansⅡ to make it work on mixed numerical and 
categorical attributes is another direction for us. 
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