
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1065

A New Clustering Algorithm for Categorical Attributes

Chunbin Tang1, Weidong Zhao2

1 Management School, Fudan University, Shanghai 200433, China
2 Software School, Fudan University, Shanghai 200433, China

bingotang@hotmail.com, wdzhao@fudan.edu.cn

ABSTRACT

Clustering over categorical attributes is an important yet tough task. In this paper, we present a new algorithm
K-meansⅡ to extend the famous K-means algorithm which is efficient only on numerical clustering, by using new
cluster center definitions and new similarity measures. Thus, our algorithm can be used in categorical clustering while
preserving the efficiency. Experiments on both real-life datasets and synthetic datasets show that the K-meansⅡ
algorithm can produce high quality results and deserve good scalability at the same time.

Keywords: clustering, categorical attributes, similarity, data mining

1. INTRODUCTION

Clustering is a widely used technique in which data
points are partitioned into groups, in such a way that
points in the same group, or cluster, are similar, and are
dissimilar otherwise [1]. Much of the previous work
focuses on numerical data which can be exploited to
naturally defined distance functions between points.
There are many algorithms proved to work quite well
under numerical conditions, such as K-means [2], and so
on.

However, much of the data in practice are categorical,
where attribute values can not be naturally ordered as
numerical values. Clustering for categorical attributes is
thus an important task: it is applicable in different
domains, e.g. an e-business recommender system. Let's
consider a market basket database in a recommender
system containing one transaction per customer, each
transaction containing the set of items purchased by the
specific customer. The transactions can be viewed as
tuples with their attributes not numerical but categorical.
As is shown in [3], we can set the attribute value as True
if and only if an item is purchased; otherwise, it is False.
We can cluster over the dataset and get the
characterizations of each group, which can be used in
targeted marketing and advertising. The
characterizations are also effective in predicting buying
patterns of new customers based on their profiles.
Another example of categorical attributes may be
“color” which can get values from the domain {black,
yellow, white}. Something should be noted, that not all
values of categorical attributes are of interest in practice
during clustering. For example, we do not pay much
attention to attribute value “False” while clustering on
the market basket database.

Categorical clustering is yet a tough work, because the
former familiar clustering algorithms for numerical
attributes cannot be used directly. Fortunately, several
algorithms have been proposed in this domain.

ROCK [3] is an adaptation of an agglomerative
hierarchical clustering algorithm. They define "links" as
the sum of number of common neighbors between two
tuples, and then optimize the "links" based criterion
function. We can get good results by using this
algorithm. However, with the increase of the dataset size,
scalability will degrade.

K-modes [4, 5] is an algorithm extending the K-means
algorithm to work for categorical attributes. They define
a new dissimilarity measure for categorical objects,
“modes”, instead of means, and then use a
frequency-based method to update modes in the
clustering process. It is scalable as the number of
clusters and the dataset size increases. However, the
algorithm is unstable because of non-uniqueness of the
modes.

STIRR [6] is an iterative algorithm based on non-linear
dynamical systems. Some research shows that the
known dynamical systems cannot guarantee
convergence [7].

There are a few other clustering algorithms trying to
solve the categorical clustering problem from different
perspectives, such as CACTUS [8], Squeezer [9],
COOLCAT [10], and so on. In this paper, we present
K-meansⅡ, a new clustering algorithm for categorical
attributes. Similar to K-modes, K-meansⅡ also extends
K-means to categorical space. It modifies the definitions
of cluster centers and similarity measures. Like
K-means, it can achieve both high quality results and
scalability.

The rest of this paper is organized as follows. In Section
2, several definitions related to categorical clustering are
given. Section 3 shows our new algorithm in details.
Some basic analysis is given in this section as well. In
Section 4, experimental results on both real-life datasets
and synthetic datasets are demonstrated. Finally, the
conclusion is in Section 5.

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1066

2. DEFINITIONS

In this section, several definitions related to categorical
clustering are given. Our definitions are quite like those
in [5].

Definition 1: Let A1, A2, …, An be n attributes describing
a space Ω, and D1, D2, …, Dn the domains of the
attributes respectively. Di is defined as categorical if it is
finite and unordered, e.g., for any a, b ∈Di, either a=b,
or a≠b. Ai is then called a categorical attribute. Ω is a
categorical space if all A1, A2, …, An are categorical.

Definition 2: Ai is called Boolean attribute if Ai is
categorical and has two different values. For simplicity,
we often represent Di as {0, 1}. Ω is called a Boolean
space if all A1, A2, …, An are Boolean. The market basket
dataset above is a case in point.

Definition 3: Let the dataset D be a set of tuples where
each tuple nDDDtt ×××∈ ...: 21 . If Ω is a categorical
space, each data object X in the dataset D can also be
represented as a conjunction of attribute-value pairs:

)(...)()(2211 nn xAxAxA =∩∩=∩= , where xi ∈Di, for
i=1,2, …, n. For the sake of simplicity, we present X as
a tuple: nn DDDxxx ×××∈ ...),...,,(2121 .

3. K-MEANS Ⅱ ALGORITHM

In this section, we introduce a new clustering algorithm
over categorical space -- K-means Ⅱ, which is named
after the famous K-means clustering algorithm. Since
our K-means Ⅱ is similar with K-means, two main
problems are met in our algorithm as well, which are the
calculations of the cluster centers and the similarity
measures between tuples and cluster centers. Therefore,
we will solve the two problems before putting out our
new algorithm.

3.1 Cluster Centers

We now define the center of a cluster as follows. Let
C= {X1, X2, …, Xm} be a cluster of data objects, with
Xi=(xi,1, xi,2, …, xi,n), for i=1, 2, …, m. Let tj(a) be the
number of the tuples with their j-th attributes’ value as
“a” in the cluster. Define Pj(a) as the percentage of a,
thus Pj(a)= tj(a)/m. Furthermore, let Pj be the
conjunction of Pj(a), for all a ∈Dj. Finally, we can
define the cluster center Q as follows:

)P , ,P ,(P Q n21 …= (1)

3.2 Similarity Measurement

Before we define the similarity between the tuple Xi and
the cluster center Q, we first define the similarity
between the j-th attribute of Xi and the j-th attribute of Q
as:

)(,, jijji xP=δ (2)

The following definition shows the similarity δi between
Xi and Q:

n
n

j
jii ∑

=
=

1
,δδ (3)

δi works quite well when all values in Dj (j=1, 2, …, n)
are of great importance in clustering the dataset.
However, in practice, we sometimes do not pay much
attention to some attribute values. As is shown in
Section I, the attribute value “False” is not of interest to
us in the market basket. Therefore, we should modify
the above definitions.

Let Vj be the set of important values of Aj, therefore,

jj DV ⊆ . Then we define the similarity '
, jiδ between

the j-th attribute of Xi and the j-th attribute of Q and its
weight ji,θ .

⎪⎩

⎪
⎨
⎧

∉

∈
=

jji

jjijij
ji Vx

VxxP

,

,,'
, ,0

),(
δ (4)

⎪⎩

⎪
⎨
⎧

∉

∈
= ∑

∈ jVa
jjij

jji

ji VxaP

Vx

,

,

,),(

,1
θ (5)

Thus, we can get the similarity '

iδ between Xi and
Q:

∑∑
==

=
n

j
ji

n

j
jii

1
,

1

'
,

' θδδ (6)

When Vj=Dj (for j=1, 2, …, n), or in other words, when
all values in Dj (j=1, 2, …, n) are of great importance in
clustering the dataset, the two similarity '

iδ and iδ
equals. Thus, we can use '

iδ to replace iδ . Finally, we
get the function Sim(Xi, Q) to compute the similarity
between tuple Xi and the cluster center Q as follows:

'),(ii QXSim δ= (7)

The above formula Sim(Xi, Q) seems to be quite
complex and odd. However, it does derive from the
famous simple match coefficient and Jaccard's
coefficient* developed to show the similarity for binary
data. The function Sim(Xi, Q) extends the above two

* The two are coefficients developed for binary data. Let
a=conjoint presence (1, 1), b=mismatch (1, 0), c=mismatch (0,
1), and d=conjoint absence (0, 0). Then Simple Matching
Coefficient= (a+d)/(a+b+c+d). Absence and presence as well
as matches and mismatches have equal weights in this
coefficient. Jaccard's Cofficient= a/(a+b+c). Conjoint absence
(0, 0) is ignored in the coefficient.

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1067

functions, and can be used not only for binary data.

3.3 Our Algorithm

Our K-means Ⅱ algorithm is similar to the famous
K-means [2] algorithm. It can also be described in four
steps.

Step 1: Select k cluster centers randomly. (We may
choose the first k tuples as the beginning cluster centers)

Step 2: For each tuple Xi, calculate the similarities
between Xi and Ql, which is Sim(Xi, Ql), for l=1, 2, ..., k.
Assign Xi to the cluster Cl (from the formal cluster Cl')
so that the similarity between Xi and Ql is the largest.

Step 3: Calculate the new k cluster centers, one for each
cluster. Update both Ql and Ql'.

Step 4: Go to Step 2 until no tuple has changed clusters
after a full cycle test of the whole dataset. Otherwise,
end.

3.4 Selection of k
The selection of k plays an important role in the final
cluster result. To facilitate the selection, we define a
notion ∆ to show the average similarity of the whole
dataset.

numQXSim
DX

i
i

∑
∈

=∆),((8)

Q is the center of the cluster which Xi is in, and num is
the total number of tuples in the dataset. It is not
surprising that ∆ increases as k increases. If ∆ is too
small, it indicates that k is not chosen properly, and we
should increase k. So it seems that we will get accurate
results if we set k at a high level. However, if k is too
large, we will not get very good cluster results, either.
We can use ∆ as an index to select an acceptable k by
experiments.

3.5 Time Complexity

The time complexity of K-means Ⅱ algorithm depends
on the size of dataset (num), the number of attributes (n),
the number of iterations (i), and the number of clusters
(k). Thus we can get that our algorithm has the
worst-case time complexity O(num*n*i*k). It shows
that the time complexity is linear with the size of dataset,
the number of attributes and the number of clusters.
Therefore, we can make the conclusion that our
algorithm deserves good scalability.

4. EXPERIMENTAL RESULTS

In this section, the results about the performance of
K-means II are demonstrated. We examine the quality of
the clustering results on real-life datasets, and the

efficiency on synthetic datasets. Our algorithm is
implemented in Java. All the experiments are conducted
on a Pentium III-600 machine with 256M of RAM
running Windows XP Professional.

4.1 Real-Life Datasets

We experiment our algorithm on two real-life datasets.
One is the Congressional Voting dataset, and the other is
the Mushroom dataset, both of which can be obtained
from the UCI Machine Learning Repository [11]. The
two datasets are also used in the algorithm ROCK
which can produce good clustering results [3]. Thus, we
can compare our K-meansⅡ with ROCK.

Congressional Voting Dataset: It is the United States
Congressional Voting Records in 1984. Each record
corresponds to one Congress man's votes on 16 issues.
Nearly all attributes are Boolean (Yes and No) values,
and a few contain missing values. A classification label
of Republican or Democrat is provided with each data
record. The dataset contains tuples for 168 Republicans
and 267 Democrats.

Mushroom Dataset: Each tuple in the dataset contains
information that describes the physical characteristics of
a single mushroom, with a poisonous or edible label. All
attributes are categorical. It has 8124 different
mushroom records, of which 4208 are edible. A few
contain missing values, as is in Congressional Voting
Dataset.

Table 1: results for congressional voting dataset
ROCK K-meansⅡ(k=4)

No. Rep. Dem. No. Rep. Dem.

1 144 22 1 23 3

2 5 201 2 140 30

K-meansⅡ (k=2) 3 1 34

No. Rep. Dem. 4 4 200

1 7 220

2 161 47

As Table 1 illustrates, both ROCK and K-meansⅡ can
identify clusters with the majority of Republicans or
Democrats. Due to the elimination of tuples, the sum of
the sizes of clusters is not equal to 435 in ROCK.
However, K-meansⅡ does not eliminate any tuples. As
is suggested in sub-section 3.4, we can increase the
average similarity Δ by increasing k. Tables 1 also
shows the results of K-meansⅡ when k = 4. The result
is quite accurate and encouraging. Therefore, we can
conclude that K-meansⅡ can produce good clustering
results as ROCK does.

Table 2 describes the clustering results for Mushroom
dataset by using ROCK and K-meansⅡ. Nearly all
clusters found by both algorithms are pure edible or

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1068

poisonous ones. Exceptions occur in cluster 5 and 10
(K-meansⅡ), and in cluster 15 (ROCK). It shows that
both algorithms perform well.

Table 2: results for mushroom dataset
ROCK

No. Edible Poisonous No. Edible Poisonous

1 96 0 12 48 0

2 0 256 13 0 288
3 704 0 14 192 0

4 96 0 15 32 72
5 768 0 16 0 1728
6 0 192 17 288 0

7 1728 0 18 0 8

8 0 32 19 192 0
9 0 1296 20 16 0

10 0 8 21 0 36
11 48 0

K-meansⅡ(k=27,∆=0.81)

No. Edible Poisonous No. Edible Poisonous

1 192 0 15 224 0

2 96 0 16 0 864
3 288 0 17 0 40
4 372 0 18 192 0

5 16 72 19 0 864
6 276 0 20 324 0

7 0 675 21 32 0

8 192 0 22 324 0
9 0 288 23 432 0

10 96 8 24 128 0
11 768 0 25 0 256

12 0 621 26 160 0

13 0 192 27 0 36
14 96 0

Experiments on both datasets show that our algorithm
can produce accurate clustering results as ROCK does.
We can conclude that our algorithm can produce high
quality clusters.

4.2 Synthetic Datasets

In order to test the scalability of our algorithm, we
experiment with synthetic datasets which are generated
by using a data generator. We set the number of attribute
values for each attribute to 5. All possible values are
produced with (approximately) equal probability. We
test three scalabilities of the algorithm using these
datasets. The first one is the scalability of our algorithm
against the dataset size, the second is the scalability
against the number of clusters, and the third is the
scalability against the number of attributes. In Figure 1,

the dataset size is increased from 10000 to 100000, and
the numbers of attributes and clusters are fixed to 10
and 30 respectively. Figure 2 shows the results when
increasing number of clusters from 10 to 50, and the
cluster size and the number of attributes are set to 10000
and 10. In Figure 3, we increase the number of attributes
from 10 to 40, and we set cluster size at 10000 and the
number of clusters at 30 fixedly.

These results are very encouraging because they show
clearly a linear increase in time as the cluster size, the
number of clusters, and the number of attributes
increase. They accord with the analysis in sub-section
3.5. Therefore, we can make the conclusion that our
algorithm has good scalability with respect to the above
three dimensions.

Figure 1: scalability to dataset size (attributes: 10,

clusters: 30)

Figure 2: scalability to clusters (dataset size: 10000,

attributes: 10)

Figure 3: scalability to attributes (dataset size: 10000,

clusters: 30)

5. CONCLUSION

Clustering of categorical attributes is an important yet
difficult task. In this paper, we propose an efficient
algorithm called K-meansⅡ. Both analysis and
experiments show that our algorithm can produce high
quality results and at the same time deserve good
scalability.

The K-meansⅡ algorithm has made extensions to the
K-means algorithm by using new cluster center
definitions and new similarity measures. Thus, the
K-meansⅡ can be used in categorical clustering while
preserving its efficiency. The new definition of cluster

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1069

center can also be used as characteristic descriptions
which are useful in interpreting clustering results.
Another advantage is that the algorithm can handle
attribute values which are not of interest. Thus, the
algorithm can handle missing values very easily,
because missing values can be viewed as new attribute
values which are not of interest while measuring the
similarity.

For the future work plan, we will revise K-meansⅡ to
make it more efficient on very large dataset size, for
examples, datasets with billions of tuples. The extension
to K-meansⅡ to make it work on mixed numerical and
categorical attributes is another direction for us.

REFERENCES

[1] Anderberg, M., Cluster Analysis for Applications,
Academic Press, 1973.
[2] MacQueen, J., Some Methods for Classification and
Analysis of Multivariate Observations, In Proceedings
of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, pp281-297, 1967.
[3] Guhay, S., Rastogi, R., Shim, K., ROCK: A Robust
Clustering Algorithm for Categorical Attributes, In
Proceeding 1999 Internation Conference Data
Engineering, pp512-521, 1999.
[4] Huang, Z., Clustering Large Data Sets with Mixed
Numeric and Categorical Values, In Proceedings of The

First Pacific-Asia Conference on Knowledge Discovery
and Data Mining, 1997.
[5] Huang, Z., A Fast Clustering Algorithm to Cluster
Very Large Categorical Data Sets in Data Mining, In
Proceeding SIGMOD Workshop on Research Issues on
Data Mining and Knowledge Discovery, pp146-151,
1997.
[6] Gibson, D., Kleiberg , J., Raghavan, P., Clustering
categorical data : an approach based on dynamic
systems, In Proceeding of Very Large Database,
1998.
[7] Zhang, Y., Fu, A., Cai, C., et al., Clustering
Categorical Data, In Proceeding of ICDE, 2000.
[8] Ganti, V., Gehrke, J., Ramakrishnan, R.,
CACTUS-clustering categorical data using summaries,
In Proceeding of Knowledge Discovery and Data
Mining, pp73-83, 1999.
[9] He, Z., Xu, X., Deng, S., Squeezer: An Efficient
Algorithm for Clustering Categorical Data, Journal of
Computer Science and Technology, Vol. 17, No. 5,
pp611-624, 2000.
[10] Barbará, D., Couto, J., Li, Y., COOLCAT: An
entropy-based algorithm for categorical clustering,
Eleventh International Conference on Information and
Knowledge Management (CIKM'02), 2002.
[11] UCI Machine Learning Repository.
http://www.ics.uci.edu/~mlearn/MLRepository.html

