
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

1193

Study of SOA Component Dynamic Scheduling
Based on Mobile Agent Coalition

Tao He1, Bin Tang2, Leqiu Qian3

Computer Science and Engineering School, Fudan University, Shanghai 200433, China
1 eGrid@msn.com, 2 edesk@126.com, 3 iAgent@163.com

ABSTRACT

Service-oriented components differ greatly with the traditional ones in the Service-Oriented Architecture. The ways of
scheduling components seamlessly according to the agile computing needs to fit the e-business requirements is the key
technology in the highly distributed, paralleled environment. In this paper, Based on the Multi-Agent Coalition, a new
service-oriented component dynamic scheduling model is proposed, including the Multi-Agent Organization to
schedule and coordinate the component assembly, the design of virtual execution task list table and self-learning
algorithm, the definition of the Services component model, and the mechanism of collaboration Agents to search,
discovery, concurrent schedule, dynamic assembly when execution in an heterogeneous network environment. To a
large extent, the thesis solves the traditional problem of over-emphasis on centralized control logic, which leads to
lacking flexibility in e-Business computing presently, and helps e-business service-oriented components become more
adaptive, mobility and intelligence.

Keywords: Service-Oriented Component, Multi-Agent, e-Business, Scheduling, Algorithm

1. INTRODUCTION

Automation is the most effective way to improve the
efficiency of e-business. With the widely use of
Service-Oriented Architecture software engineering,
there is at least two problems emerged: too much
service-oriented components which lack of automatic
management system and too weak technology now-used
which cannot support the dynamic and agile computing
to meet e-business demand, especially to fully
considerate the enterprise individuation. Multi-Agent
technology as the research focusing on Artificial
Intelligence and distribution computing, gives an
effective way to solve these problems, which make
business becomes more agility and interconnectivity.

A new service-oriented component-scheduling Model
based on the Multi-Agent Coalition is proposed. In the
architecture, every kinds of agent can enhance mobile
agility by self-learning mechanism and by storage of
personal information in every dynamic and distributed
execution. This approach use a fully new method model
to construct the virtual business activities by simulating
transactions in the real business world, such as locate
customs, negotiate with them, and so on. We use the
model in the following by build a MAGE (Multi-Agent
Environment) to put the conception into practice, and
the process of e-business is simplified greatly.

2. DYNAMIC COMPOSITION

Agent-based component dynamic composition is the
fundamental technique to shift from traditional
components to virtual service-oriented ones. With the
help of agents, components can aggregate or compose
existing services and component into new styles. Some
components are virtual ones when execution, in fact,

they don’t exist at all. Such would allow third–parties to
provide value–added components, which is similar with
the real world services business. Five new features of
services component are defined here.
Dynamic Existence It will not only being an entity as
used to be, but a function correlation with the time.
Autonomy The Agent-based Services Component has
the ability to take its own decisions in an independent
way, including selecting the best of the available options
according to e-Business computing requirements,
Self-adaptation to different interfaces and protocols,
being flexible, polytypic and extensible.
Competitiveness It should be competitive for a
candidate to integrate into the SOA. More efficient and
accuracy should be achieved with the lowest costs, and
the self-learning mechanism which enhance the
performance of components after execution is vital.
Sociability Communication protocol of different Agents
is needed to enable them interaction with each other.
Semantic matching Semantic matching of component
descriptions will make composition more transparent.
There are two basic composition styles under the control
of composition Agent. One is Hierarchical Composition,
and another is dialogic Composition.

Main Agent

Exe

Fig. 1 Agent-based Hierarchical Composition

Services

Composition Agent

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1194

In hierarchical compositions, some related components
cooperate under the agent coordination act as a new
component at a higher level.

Coordination Agent
Exe

Fig. 2 Agent-based dialogic Composition

In the dialogic pattern, interacting components are
viewed as peers. One component may make use of the
other by exchanging data or control signals supervised
by coordination Agent.

3. RUN-TIME ASSEMBLY MODEL

The service-oriented component dynamic scheduling
and assembly model during the run-time should be
predictable, applicable and manageable. We investigate
the mechanism from three perspectives including Agent
Coalition Perspective, Component Dynamic Assembly
Perspective and the Inside Control Gene Perspective.

3.1 Agents Society Architecture in the Model

According to the dynamic assembly requirements, a
main control-agent is introduced. It is an agent stored in
migrating node with a virtual task list, and when the
main agent runs in the migrating node, these
service-oriented components can be assembled
dynamically and the task table can be taken down after
running at a previous node.

Fig. 3 Agents Society of Run-time Assembly Model

Secondly, the mobile Multi-Agent coalition is composed
of some other kinds of agents including: services search
agent, execution supervisor agent, learning agent,

integration agent, coordinate agent and safeguard agent,
which make distributed services component composite,
integrate, scheduling dynamically according to business
logic. All of them function and cooperate with each
other to overcome the shortcoming of traditional
e-business system and create a real-time virtual cyber
enterprise.

3.2 Component Dynamic Assembly Model

The Dynamic Assembly Model covers the whole
process of the service-oriented components discovery,
composition, negotiation, and orchestration dynamically
and seamlessly, which makes it possible when fulfilling
some complex commercial tasks by interacting with
distributed component resources. Nowadays, many
distributed service-oriented applications designed to
execute on Grid Computing Environment, require the
simultaneous co-allocation of multiple service-oriented
component resources in order to meet high business
performance frequently. The approach via agent
coalition mechanism for services allocation and
management architecture is very helpful to the
co-allocation resource efficiently. With the help of
Mobile Agents, new component clusters are generated
and coupled to run at a higher level. So, the main focus
is to design more adaptive component interfaces to
enable the assembly and scheduling process more
flexible and context-aware. Agent is the best solution.

Application Coverage

Main and

 CoordinateAgent
Composition

Integration

Agent
 Component

Facet Agent

Resource

Resource Agent

n-tier

Fig. 4 Component Dynamic Assembly Model

The Facet Agent based on XML encapsulates the detail
information of interface and was supported by the
component assembly history information warehouse. It
has self-descriptions and can communicate with other
component agents to composite into a new style
according to the e-Business requirements and the
characteristic information retrieved from history data.
Main Control Agent can migrate to other node to
supervise the compiling and execution of local
assembled component according to the Virtual Task List
optimized by dynamic scheduling Algorithm. After each
successful running, some key information about the
component will be inserted to the knowledge base.

Main Control Agent
Exe supervisor Agent Coordinate

Agent Integration Agent
Learning
Agent

Search Agent
Agent Infor. DB

Business logic

Run-time infor

local infor.

Virtual task list

Other Agent System

Services
Component
Resource

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

1195

3.3 Run-time Agent Gene Design

A soft gene for agent is a hereditary unit that determines
some particular characteristics in a component. After
adopting certain soft genes, the software component can
make certain practice activities, update its own behavior
rules, etc. the main agent gene is the soul of the system
in the run-time assembly process. It is define as XML,
whose items can be easily updated by operation classes.
We give the main definitions here:

<? xml Version=”1.0” encoding = “utf-8”>

<Main Agent url=” ” KnowledgeBase=” ” …>
<Agent id=0001 type=”ExeAgent”>

<Infor>It is a Exe Supervisor Agent!</Infor>
<IP>12.121.10.156</IP>
<KnowledgBase>url </KnowledgeBase>
<DataPool>virtual execution lists</DataPool>

</Agent>
<Agent id=0002 type=”SearchAgent”>

<Infor>It is a Search Agent!</Infor>
<IP>12.121.10.100</IP>
<KnowledgBase>url </KnowledgeBase>
<DataPool>search requirements</DataPool>

</Agent>
<Agent id=0001 type=”CoordinateAgent”>

<Infor>It is a Coordinate Agent!</Infor>
<IP>12.121.10.101</IP>
<KnowledgBase>url </KnowledgeBase>
<DataPool>coordinate relations</DataPool>

</Agent>
<Agent id=0001 type=”CompositeAgent”>

<Infor>It is a Composite Agent!</Infor>
<IP>12.121.10.1<IP>
<KnowledgBase>url </KnowledgeBase>
<DataPool>component id</DataPool>

</Agent>
……

</Main Agent >

Gene MainAgent
{ Attribute:

double Skillness,Intelligence,LeaderAbility;
string IPaddress, State, Task ;
struct *VirtualExeList, *MessageQueue ;
Agent *xAgent[N] ;

Method:
InitiateAllAgent();
UpdateGene(XML DOM)
SendControlMessage(Agent *Target);
CheckGoal(*Compnent);//whether meet the goal
Scheduling(struct *VirtualExeList);
MigrateToDestin(string IPadress);
……
Destroy();

}

Gene ExeAgent
{ Attribute:

long int TaskNum;

struct *VirtualExeList, *MessageQueue ;
……

Method:
 OptimizeExeList(*VirtualExeList);
 UpdateGene(XML DOM)
 ……

}

Gene CompositeAgent
{ Attribute:

long int ComponentNum;
struct *Compo, *MessageQueue ;
……

Method:
 ComponentInsert(*Compo, TagetAddress);
 ComponenDelete(*Compo, SourceAddress);
 SearchRequest(string Requirement)
 UpdateGene(XML DOM)
 ……

}……

With the help of Agent Gene revised and optimized
adaptively, components can be easy understood,
assembly according to the commercial computing
requirements compared with that of before.

4. SCHEDULING ALGORITHM

4.1 Agent-based Concurrent Algorithm

Agent-based concurrent scheduling algorithm processes
requests for service between agents and the executions
of the tasks list. We mainly use the Enhanced
Coffman-Graham Algorithm to perform concurrent
scheduling to reduce the time of execution. Applicable
components of systems are organized logically
according to the optimized virtual execution task list.
:
Algorithm
Tasks List: T={T1, T2,…, Tn} a(Ti): Ti Tag
Ti successor aggregate : S(Ti)={Tk|TiΘTk}
NEC(Ti): Max{time(Ti+S(Ti))

Step1: Include tasks without successor and tag as {R};
Step2: for i=1 to n do

{ a. Calculate NEC(Tj) of all Tj in {R};
 b. take out the Task with Min(NEC(Tj));
 c .if Min(NEC(Tj))>1, Random select a TR;
 d. a(TR)=i;
 e. Add the task Which has no Tag but

 its successors are all tagged into {R}
 in TR preceding aggregate.

}
Step3: Construct L’=(un,un-1,…,u2,u1), to ensure a(ui)=i
(i=1,2,…,n);
Step4: Eliminate virtual tasks in L’ to construct L;
Step5: To (TΘL), use common Graham algorithm to
scheduling tasks in L;
Reference: common Graham algorithm[7]

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1196

4.2 Mismatch Component Assembly algorithm
The semantic matching of service-oriented component
is always hindered by mismatches when assembly.
Formalized definition of matched component is:
a) Match(O, O’)=mspec(Ospec , O’spec)^msig(Osig , Osig’)
If O and O’ signature and specification match, then they
are matched components.
b)Rj:the e-Business Required Components vector space
 C: the exist component in service environment

 M(C, Rj)=
∑∑

∑

==

=

×

×

N

i
j

N

i
ji

N

i
ji

cr

cr

1

2

1
,

2

1
,

 If M(C, Rj)<allowmin, then they are match.
When the Search Agent find unmatched component, it
can solve in the follow ways by coordinate agent:
·Send a message to Main Agent to adjust to suit the
component if the execution can meet the goal
· Search another component to composition as a
matched one
·Use Interface Agent to mask unnecessary function and
parameters
·Function as middle ware to cover the discrepancy
·Duplicate and revise the original code to produce a
new suitable component according to knowledge base.
·Specialized the component some control parameters to
get the sub-function of a component
·Use learning mechanism to enhance the component
function to match the requirement
·Translate the component I/O data format

4.3 Run-time Agent Self-learning Algorithm

Collaborative and Shareable Learning System is used to
improve the performance of Mobile Agent Coalition on
service-oriented components dynamic scheduling. It’s
the integration of Reinforcement Learning, Bidding,
Genetic and other Algorithms.

We use shared knowledge and commercial logical by
refining each agent's particular knowledge to improve the
assembly of components and scheduling of task. During the
run-time, the agents can dynamically alter the learning
contents and presentation over time. Specifically, the agents
can migrate and participate in a number of important tasks
such as automatic composition of component according to
the commercial logic, analysis and delivery services to users
and adaptation to new patterns and services. This
self-learning algorithm system is hierarchical in terms of its
distribution to different agents. Agent Coalition can use
learning mechanism to upgrade other algorithms includes
component evolution and aberrance algorithm, virtual task
list optimization algorithm, and commercial logical pattern
auto-builder algorithm.
Every type of Agents can have its own and common
knowledge base, locally or remotely, to build a

cooperative, co-evolutionary mechanism in which
agents can learn by using a team-based reward system.
System will obtain the best team for achieving the task
in e-business computing environment which requires
coordination to succeed. These agents mainly use the
auction mechanism to negotiate their roles dynamically.
Agents bid individually according to their perceptions.
The system chooses the best combination of bids for the
team; the chosen bids may not be optimal for each
individual, but the system learns to bid as a team and
develops the best team-based strategy. We develop our
learning algorithm in a distribute, simulated version of
the real environment intelligence

5. CONCLUSION AND FUTURE WORK

Services-oriented Component based on Multi-Agent is
the revolution to the traditional computing technologies,
which make the information infrastructure be more
quickly adapt to changing business priorities. Here we
propose the framework and main part algorithms’ brief
view, which is an effective way to achieve our goals.
But, some algorithms is far more satisfied, and still need
to give deeply research for better solutions, especially
for more matured Self-learning, effective assembly and
efficient scheduling Algorithms.

ACKNOWLEDGEMENT

This work has been supported by the National Natrual
and Science Fundation of China granted in this year.

REFERENCES

[1] S.McIlraith, T.C.Son, “Semantic Web Services”. IEEE

Intelligent Systems, Special Issue on the Semantic Web,
16(2): pp46-53,March/April 2001

[2] Laurent, “Component-oriented software technology”.
Niestrasz, “Object-oriented Software Composition”,
Prentice Hall International , pp3-28, 1995

[3] R.H.Reussner. “The use of parameterized contracts for
architecting systems with software components”. In
W.Weck, J.Bosch, and C.Szyperski, editors,
Proceedings of the Sixth International Workshop on
Component-Oriented Programming, June 2001

[4] “Business Process Modeling Language”, Accessed June
2004 from http://www.bpmi.org

[5] Van der Aalst WMP. “Petri Net Based Workflow
Management Software”. Proceedings of the NFS
Workshop on Workflow and Process Automation in
information System. Athens, Geogia, May 1996.

[6] Lawrence Wilkes, “Web Services Roadmap for On
Demand Business”, CBDI Journal.

[7] Daniel, Jon Feldman, “Parallel Processor Scheduling
with Delay Constraints”, in Proc. Of the SAINT
Symposium, Jan.2001

[8] Luck, “Multi-Agent Roadmap”. www.AgentLink.org

