
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 692

A VOC Based Approach to Support Virtual Organizations

Hua Zhou1, Min Liu2,Cheng Wu3
1 Department of Automation, Tsinghua University, Beijing 100084, China

Zhouhua02@ tsinghua.org.cn
2Department of Automation, Tsinghua University, Beijing 100084, China

lium@mail.tsinghua.edu.cn
3Department of Automation, Tsinghua University, Beijing 100084, China

wuc@tsinghua.edu.cn

ABSTRACT

Employing IT as the key enable technology, virtual organization (VO) is primarily characterized as being a network of
independent, geographically dispersed organizations (member organization) providing electronic services via Internet.
To align these services effectively, one of the main challenges is to model cooperation in VO and provide correspondent
management tools. Here we present a VOC (VO Structure-Organization Resource-Character) approach to model and
run VO. VOC consists of three models. VO Structure model describes how VO functions in terms of VO Role (VR),
Protocol; Organization Resource model describes potential service providers (potential member organization) capable
participate VO. Character Model describes dynamic binding relationship between VO role and member organization.
Following the VOC model，a platform supporting the design, administration, and running of VOC is given.

Keywords: Virtual Organization, VOC model, VO Structure Model, Organization Resource Model, Character Model

1. INTRODUCTION

A virtual organization (VO) is primarily characterized as
being a network of independent, geographically
dispersed organizations with a partial mission
overlap[1,2]. Each VO is built to carry out some
processes and achieve certain goals, and as the products
and services provided by a virtual organization are
dependent on innovation and are strongly
customer-based, the organization structure must be
adaptively dynamic. Within the network, all partners
provide their own core competencies as deliverable
services, and in a networked computational environment,
some of these services are delivered in electronic form,
for example, web services. To make a VO work flexibly
and smoothly, a proper VO model and correspondent
supportive running environment that can align these
e-services are definitely necessary.

In this paper, we present a VOC (VO
Structure-Organization Resource-Character) based
approach to model and run VO. The VOC approach
consists of a VOC model and correspondent supportive
platform.

In section 2, we illustrate VOC model and some core
processes, in section 3 a VOC-based VO management
platform prototype is introduced and several
correspondent core processes is then illustrated. Then
we present a collaborative manufacturing example in
section 5.Finally we conclude some characteristics of
the VOC approach.

2. VOC MODEL

In a VO, each member organization (MO) has to assume

certain duties, deliver prescriptive services, join and
leave VO dynamically. In VOC approach, we model the
whole VO in several different models with each one
focusing on different aspect of VO.

VOC model consists of three sub models:

 VO Structure Model (VSM)
 Organization Resource Model (ORM)
 Character Model (CM)

The VOC meta model is described in Figure 1.

Figure 1 VOC meta model

2.1 VSM

The VO Structure model (VSM) describes VO structure
in terms of VO Roles and Protocols. VO Role (VR) acts
as a duty placeholder and commits to realize certain
services in VO. VR will be dynamically assigned to MO

VSM

CM

ORM

Message Flow

Protocol Rule

Character

VO

Service VO Role
1..*

1

1..*

1

0..*
0..*
0..*
0..*

commits to provide

Protocol

0..*

1

0..*

1

0..*

1

0..*

1

Protocol Goal
1..*1

designed to achieve

1..*1

VO Member
Organization

1..*

0..*

1..*

0..*

Deliverable
Services

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

693

at VO design time and runtime (MO being the
undertaker of VR). VR undertaker must realize the
services VR commits to provide. VR cooperates with
each other to achieve VO goals. The cooperation
relationship between VR is modeled as Protocol.
Protocol includes protocol rule and Message Flow. The
former represents constraints that VR has to comply
with. The latter illustrates message template and
message sequence exchanged between protocol
participants (VR). Protocol is instantiated as
conversation which maintains the concrete context and
threads participants will refer to frequently during
cooperation.

Link Type

Message Body

Sender

Receiver

Conversation IDProtocol ID

Message Template
SeqNo

0..*

0..*

0..*

+Subsequence
0..*

1
1

Message Head

1

1

1
1

11

1

1
1 1

Message
Type1

1

1

1

1
1

11
1

1
1

1

111

1

Message Flow

1..*

1
{Seq}1..*

1

Initiator

Protocol Goal

Protocol
1 0..*1 0..*

1

1

1

1

1

1..*
designed to achieve

1..*

1

Figure 2 Message Flow

VR models static aspect of VO while Protocol models
dynamic aspect. Each Protocol is designed to satisfy
certain cooperation goals. For example, we can design a
protocol based on Contract Net with its goal being task
delegation. During runtime, VR undertaker can only
choose from prescriptive protocols to cooperate with
other VR, and follow exactly the Message Flow (Figure
2). Each protocol has an Initiator who is responsible for
creating a protocol-based conversation. Each Message
Template has a head and body. The Head includes
message related protocol ID, conversation ID, sender
VR, receiver VR and message type. The Body contains
message content. Conversation participant must send
message in according with the sequence and template
specified in Message Flow to help each other indicate,
understand, respond message quickly and properly.

2.2 ORM

Organization Resource Model (ORM) describes MO’s
capability and deliverable services. ORM of VO
contains all potential MOs of a VO. Organization in
ORM can be deputed VR dynamically by VO
Administrator.

2.3 CM

Character Model (CM) is responsible for binding ORM
and VSM. To make a VO functions as will, each VR has
to be assigned to certain MO. We name this kind of
‘Play’ relationship between VR and MO as character. A
MO can assume several characters at the same time.

3.VOC-BASED PLATFORM

Internet

Figure 3 VOC based Platform structure

Based on VOC model, we developed a VOC based
platform prototype (Figure 3). The core VOC model
element is realized as Java object running in classified
pools: VSM Pool; Character Object Pool; MO Agent
Pool. Each kind of pool is managed by a correspondent
software component.
By using the platform, we can design and run VO. The
platform includes a VOC Model DB, a VO Instance DB,
and VO Tools.

 VOC Model DB
VOC Model DB stores all VOC model data, including
VSM, ORM and CM. VOC model works just like a
class in Object –Oriented technology. A running VO is
an instance of a special VOC model and consists of
different types of software objects (or components)
living in correspondent object pools.

 VO Instance DB
VO Instance Db stores all VO instance related data such
as VO start time, VO original VOC model, VO MO etc..
By providing VO Instance DB, we can adjust VO in a
case-based approach and thus providing a flexible way
of managing VO.

 VSM Mgr
VSM Mgr is responsible for VSM management,
including VSM creating, saving and dynamic
adjustment, VSM Object initiation and life cycle
management. VSM Mgr is the manager of VSM pool.
There are four types of object in VSM Pool:

 VO Object

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 694

A VO object is the controller of a running VO. When a
VO is initiation the system will create a VO object and
this VO object will be responsible for managing the
whole life cycle of VO and create, manage, destroy
other VSM object in this VO as needed.

 VR Object
Each VR in VSM will create a VR Object at VO
runtime.

 Protocol Object & Conversation Object
Each protocol in VSM will create a Protocol Object at
VO runtime. When a protocol-based interaction is
initiated, a Conversation Object is created to manage it.
Conversation Object acts as a communication channel
between VO Object which can only send messages
through the interface Conversation Object provided and
in the protocol specified form and sequence.
Conversation Object can get message and rule related
information from Protocol Object at runtime. For there
may be tens of thousands conversation being running at
the same time, saving protocol related information in
Protocol Object is wise choice to avoid frequent DB
access.

 ORM Mgr
ORM Mgr manages ORM, and can instantiate MO
Agent Object (MAO) according to the registered MO in
ORM. Any organization that wants to participate in the
VO must be registered in ORM. There are two ways of
registering MO: active way and passive way. In active
way, organizations must register themselves in ORM by
providing their own capacities and deliverable services
information. In passive way, VO Administrator has to
search above information and identify appropriate
organizations, contracts with them and registers them
manually in ORM. Each registered organization will get
a reference (though Web Service) to a MAO which is
created by ORM Mgr in MO Agent Pool. When a
registered organization exits from ORM, the
correspondent MAO will terminated.

 MO Agent Pool
A MAO can only lives in MO Agent Pool. Each MAO is
just a proxy of registered MO in VOC Platform and is
exposed to related MO as an accessible web services.
MAO provides an effective way of communicating with
MO and is independent from the internal realization
structure of original MO. We also provide an interface
for MAO so that it can interact with Character Object
smoothly.

 Character Binder
Character Binder manages the binding between MO and
VR. A VO can not be instantiated until each VR has
been assigned to a concrete MO. A MO-VR pair is
represented as a character and instantiated as a
Character Object (CO). Thus, within a VO, MO can
cooperate with each other in this way:
MO MAO CO VR Object Conversation

Object MAO MO. This indirect way of interaction
may bring some efficiency problems but illustrate a
flexible way of reconfiguration. By making all objects
active in pool (RAM), we can alleviate the efficiency
problem to some extent.

 VO Admin Center
VO Admin Center is the center controller of the whole
VOC-based platform. VO Administrator uses it to
manage all VO running in the VOC-based Platform. VO
Admin Center calls VSM Mgr, Character Binder, ORM
Mgr to create, destroy, and adjust VOC model and
instantiated VO as well.

3. VO CORE PROCESS

To build VO based on the platform in an effective way,
we identified some core processes in constructing VOC
model and running VO. These are processes the
platform supports and each MO has to comply with. We
illustrate several processes below:

 MO Registering Process
MO can participate in special VO by first registering
itself in VOC-based Platform and then get a MAO
reference.

 MO Terminating Process
MO can only terminate from running VO after issuing
MO-TERMINATION message to all other VRs and
complete works on hand. Thus other VRs won’t send it
any more messages after their completing
to-be-terminated MO related cooperation work. The
platform will then destroy related CO, MAO.

 MO Entering VO Process
After a special MO is selected to assume a VR, it has to
realize all services specified in VR specification. First,
the platform will send the target MO a VR specification
identifying all services and protocols MO has to realize
in detail. Then MO must design and realize it, and then
answer the platform with a SERVICE-READY message.
Only after this process, the platform can confirm the
VR-INSTANTIATION-READY status of VR.

 VSM Instantiating and Terminating Process
The platform first checks all its VR to confirm all of
them being in VR-INSTANTIATION_READY status,
and then creates the whole VO instance in this sequence:
VO Object VR Object Character Object.
To terminate a exist VO instance, the platform first
check all VR to confirm all MO has issuing
MO-TERMINATION message and then destroy the
whole VO instance in this sequence: Character
Object VR Object VO Object.

4. SAMPLE APPLICATIONS

By referring a production process in an aeronautic
assembly factory, we construct our sample application

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

695

to verify the effectiveness of the platform (See Figure 4).
The product experience 2 stages before assembled. Due
to the cost-reduction problem, the first two stages is
outsourcing to two different factories. But the
contractual manufacturer is not fixed to allow more
flexibility to purchase lower cost and higher quality.
And production stages will change from time to time
due to technology development. That is to say, the
production routine and contractor list is not static. Thus
the factory has to issue production task and cooperate
with contractual manufacturers in an unstable
production net. A production-net-adaptive platform
supporting collaborative production task allocation is
helpful.

Contract Net
Protocol

Contract Net
Protocol

Stage 1 Stage 2 Stage 3:
Assembly

Contractual
Factory 1

Shop
floor 2

Contractural
Factory 2

VSM

CM

ORM

Figure 4 Collaborative Manufacturing Example

By applying VOC approach in this example, we can
build Stage as VSM VR, and manufacturing contractor
as MO, and the contractual manufacturing relationship
as Character, thus we can adjust the collaborative
relationship flexibly. Meantime, by designing proper
VR Protocol suitable for production task allocation, we
can change task allocation procedure as well.

5. CONCLUSIONS

The VOC based approach of managing VO has the
characteristics as follows:

 Reusable
We divide the whole VO into three models with each
one focusing on different aspects of VO. VSM models
the static structure and cooperation relationship between
MO. ORM works as a resource pool while VO
Administrator can choose from. Character Model
connects VSM and ORM to form a concrete VO. Thus
we can conclude the reusable issue into these three
levels. In VSM level, a historical VO structure model
can be a reusable unit. For example, we can elicit a
proved effective VSM into enterprise knowledge base
and turn it into the original reference model of an
upcoming VO (like the case of section 5). In ORM level,

a MO is shared between different VO and can be
assigned different VR from different VO at the same
time. A MO’s Character history can identify what kind
of VR (protocols, services) it is most suitable for.

 Reconfigurable
As MO cooperate with each other in an indirect way and
the existence of VO Instance DB, VO Administrator can
reconfigure the VO structure by adjusting VSM, ORM
or CM. For example, you can change the cooperation
constraints by applying different protocol between VR.

 Model driven
Each VO is initiated and run based on the VOC model.
You can influence the VO behavior by just adjusting VO
case model stored in VO Instance DB.

 Scalable
ORM works as a resource pool where all potential VO
participants can enter and exit flexibly.

Future research will focus on dynamic VR delegation
and dynamic VR selection.

ACKNOWLEDGEMENT

ICEB2004 is supported by the National Natural Science
Foundation of China.

REFERENCES

[1] Yates, J., Orlikowski, W.J., Woerner, S.L., “Virtual

organizing: using threads to coordinate distributed
work”, Proceedings of the 36th Annual Hawaii
International Conference, pp271-280, Hawaii,6-9
Jan. 2003

[2] Troy J. Strader, Fu-Ren Lin b, Michael J. Shaw C,
“Information infrastructure for electronic virtual
organization management”, Decision Support
Systems, Vol.23, pp75–94,1998

[3] IGLESIAS C. A, GARIJO M, and GONZALEZ J.
C., “A survey of agent-oriented methodologies”,
Proceedings of the 5th International Workshop on
Intelligent Agents, pp317-330, Heidelberg, Germany:
Springer-Verlag, 1999.

[4] WOOLDRIGE M et al., “The Gaia Methodology for
Agent-Oriented Analysis and Design”, Journal of
Autonomous Agents and Multi-Agent Systems, Vol.3,
No. 3, pp 285-312, 2000

[5] FERBER J, GUTKNECHT O.,“A Meta-Model for
the Analysis and Design of Organizations in
Multi-Agent Systems”, www.madkit.org/publication

