
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1207

The Design of a Web Document Snapshots Delivery System

David Chao

College of Business, San Francisco State University, San Francisco, CA 94132
dchao@sfsu.edu

ABSTRACT

A web document snapshot is a point-in-time capture of its code and the resulting presentation of executing the code. It
is used as a way of electronically preserving historical information published in web documents enabling an
organization to audit a web document’s contents at a point in the past and perform business analyses with historical
information recorded in it. It is also an archived copy of a web document when it is changed. This research develops a
system to deliver snapshots of a web document’s static and dynamic contents when it is requested. The system consists
of a Database Snapshot Manager for providing database snapshots and a Web Document Snapshot Manager for
providing web document snapshots. Algorithms supporting the two managers are presented.

Keywords: web document snapshot, website snapshot management

1. INTRODUCTION

A web document snapshot is the state of a web
document at a point in time (snaptime).

It enables an organization to audit a web document’s
contents at snaptime and perform business analyses with
historical information recorded in it. It is also an
archived copy of a web document when it is changed [6].
Many organizations such as government are mandated
to electronically archive official web documents [7] [8],
a web document snapshots management system will
help to meet that requirement.

However, what is the state of a web document? A web
document has dual definitions. Physically, it is a text
file containing code, such as HTML or XML that
defines its contents and presentation. Logically, it is a
web page as displayed with a browser. From a user’s
perspective, the rendering of a web document matters
more than its source code. Considering the fact that the
code of a dynamic web document may render different
contents at different times, therefore, the state of a web
document is a point-in-time capture of its code and the
resulting presentation of executing the code.

Factors affecting the state of a web document include:

a. Web document code: This includes the code that
creates web page’s static and dynamic contents.
Frequently code creating dynamic contents is stored
separately in a different file as in the case of Server-
Side-Include and Code-Behind technologies.

b. The state of internal resources it references: Internal
resources are files managed by a web site and are
available in creating the web site’s contents. Typical
examples of internal resources referenced by a web
document that affect its rendering are style sheets, files
embedded by a Server-Site Include directive, image
files, script files, and databases. These internal

resources may create dynamic contents that change
every time the document is opened, and they are subject
to change that consequently changes the web
document’s rendering. Many of these files are internal
supporting files that are created for supporting a web
document and are not for publishing individually.

c. The state of external resources it references: External
resources are files not managed by the web site but can
be referenced in creating the web site’s contents. A web
document may reference external style sheets,
components, web services, or databases. These external
resources are also subject to change.

d. Web site host environment variables: Script code may
reference a host’s system variables in creating dynamic
contents. A typical example is using the system clock to
get the current date and time. A web document that
displays the current date and time is always in a new
state.

Four levels of web document snapshot Based on the
four factors affecting web document’s rendering, four
levels of a web document’s snapshot can be defined.

Level 1 snapshot: A web document snapshot is the state
of web document code at snaptime. Creating level 1
snapshot enables a web site to trace the changes to the
web document code over time.

Level 2 snapshot: A level 2 snapshot is a level 1
snapshot with the additional requirement that all the
internal resources it references are at least level 1
snapshots at the same snaptime. These internal
resources can be categorized into two groups: database
and non-database files. For a database file to be a level
1 snapshot, it must be consistent with its state at the
snapshot time. For a non-database file to be a level 1
snapshot, it must meet the definition above.

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1208

Level 3 snapshot: A level 3 snapshot is a level 2
snapshot with the additional requirement that all the
external resources it references are at least level 2
snapshots at the snaptime.

Level 4 snapshot: A level 4 snapshot is a level 3
snapshot with the additional requirement that all the
web site host’s environment variables are reset to their
values at snaptime.

The level 1 and level 2 snapshots are related to files that
are managed by the web site, and changes to these files
can be recorded. The level 3 and level 4 snapshots
involve resources that are not managed by the web site
and it’s difficult, if not impossible, for the web site to
keep track of changes to these resources. This research
develops a web document snapshot management system
to deliver web documents’ level 1 and level 2 snapshots.
Thus, the system consists of two modules: Database
Snapshot Manager for maintaining database snapshots
and Web Document Snapshot Manager for maintaining
web document snapshots. The system is designed to
deliver snapshots with any snaptime requirement, and
snapshots are created only when requested. The
Database Snapshot Manager is presented first.

2. DATABASE SNAPSHOT MANAGER

Database snapshot management and related materialized
view management have been the topics of much
research [2] [3] [4] [5]. Many schemes have been
developed in maintaining database snapshots. This
research adopts a generalized scheme that will meet the
requirement of web document snapshots. It is presented
below.

The objective of this module is to provide a database
snapshot at any snaptime requested by users. This
requires recording all updates in a log. The log uses
time stamp to record update time, and use flags to
indicate deletions and insertions where a modification is
treated as the deletion of the old version followed by an
insertion of the new version. With such an update log
available, rolling back the current database using
updates with time stamp later than the snaptime can
generate a snapshot at any snaptime.

An alternative scheme is creating snapshots at different
intervals. These snapshots can be refreshed to a new
snaptime by applying updates between the old snaptime
and the new snaptime. The refresh operation can go
forward if the new snaptime is later than the old
snaptime, otherwise it can go backward. With the
availability of the two refresh operations, the optimal
way is to select the snapshot whose snaptime is closest
to the new snapshot, and only use updates between the
snaptimes of the selected snapshot and the new snapshot.
Let UpdateLog(tmin) represent the update log whose
minimum time stamp value is tmin; and let UpdateLog(ta,

tb) represent the segment of the update log with time
stamp between ta and tb; assume there are n snapshots
created each with snaptime ti represented by S(ti) where
i assumes values between 1 and n; assume the new
snapshot’s snaptime is ts, the algorithm
GeneratDatabaseSnapshot takes ts as input and returns
S(ts):

3. WEB DOCUMENT SNAPSHOT MANAGER

The objective of the Web Document Snapshot Manager
is to generate level 2 snapshots for all internal non-
database files including the supporting files. On the
Internet, a Uniform Resource Locator (URL) uniquely
identifies a web document. The snapshot manager is
designed to let users to use a URL with a specified
snaptime to retrieve the document’s snapshot. An
analysis of the problem is given below.

3.1 Problem analysis

At a specific point of time, a Uniform Resource Locator
(URL) uniquely identifies a document on the Internet.
At the web site, it translates to a physical path to the
web document. Although there exists a 1:1 relationship
between a URL and a web document at a given time, in
the life of the document the relationship is M:M. In a
document’s life, it may have associated with many
URLs. The web site may reorganize by changing its
directory structure, hence changing the path to a
document; a document may be renamed, or moved to a
different directory. These changes will give the
document a new URL. A URL may have associated
with many documents also. It may point to a document
that is different from the one it pointed to earlier. For
instance, a document A may be renamed to C and
another document B may be renamed to A; hence the
URL originally pointing to A is now pointing to a
different document. It may also happen when a web site
removes a URL but later reinstates the URL for another
document.

Algorithm GenerateDatabaseSnapshot:
Inputs: n snapshots, update log, and snaptime
Output:Database snapshot at snaptime

If ts, < tmin Then
 Unable to generate snapshot using this log
Else
 Select S(ti) where ti has the min |ts, - ti|
 where i = 1 to n
 If ti, < ts Then
 S(ts) = S(ti).RefreshForward(UpdateLog(ti, ts))
 Else
 S(ts) = S(ti).RefreshBackward(UpdateLog(ti, ts))
 End if
End if

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1209

HP0 HP1 HP2 HP3 HP4

 P1 P2 P3 P3 P5 P3 P4 P5

P1 P4 P4 P4 P8
P2 P2
P3 P3 P3 P3 P3

 P5 P5 P5 P7
 P6 P6
 P1 P1

VP0 VP1 VP2 VP3 VP4

Figure 2: An example of the progression of a web site with changes since its initiation.

 A web document may change its contents. Hence a
URL may not only associate with many different
documents, it may also associate with many versions of
the same document. Figure 1 illustrates the relationship
between URLs and web documents. Let Dij represents
document i, version j. In Figure 1a, URLx initially
points to D11 and D12 , then points to D2. In Figure 1b,
document D3 initially associates with URLA , then
associates with URLB.

URLs can become invalid and users may submit invalid
URLs. In Figure 1b, URLA changes to URLB and points
to D33. Is the web site able to return D3 if users submit
URLA ? Or is it able to return D32 it originally pointed to?
Even valid URLs don’t necessarily retrieve the
documents users intend for it to. In Figure 1a, a user
may use URLx saved in browser’s Favorits or
Bookmarks trying to retrieve D1. URLs invalidated by a
web site due to reorganization, document removal,
renaming, or relocation, plus the links to document
snapshots are a web site’s historical links. Tracking
historical links by recording the time and the type of
changes that occurred to a document and its URL
enables a web site to retrieve the documents associated
with the historical links.

Figure 2 illustrates the progression of a web site. T0 is
the time when the web site is initiated, and Ti denotes a
point in time when its contents change. Period i is the
interval of time between Ti and Ti+1. Assuming the path
of a valid URL is unique within the web site, a valid
path leads to a document currently published. In the
sequel, paths and URLs are used interchangeably.

There are two sets of paths in period i: VPi , a set of all
valid paths, and HPi, a set of paths becoming historical
at Ti. Note that HP0 is null. In Figure 2, paths that
produce two dotted arrow lines such as P1 in period 0,
and P4 and P5 in period 3 represent documents that are
renamed or relocated. In this case, only the document’s
path has changed but the document has not changed.
Therefore, there is no need to archive any documents,
but it is necessary to chain the old path to the new path
in order to track the change. Paths that produce two
solid arrow lines such as P3 in period 1, and P3 and P5
in period 2 represent documents that are modified. In
this case, the path is still valid but the document before
the change needs to be archived as the document’s
snapshot. Paths that produce one solid arrow line, such
as P2 in period 1 and P3 in period 3, represent
documents that have been deleted. Those documents
must be archived.

A path in HPi may be repeated in HPj, just as P3 is
repeated in HP2 and HP3. To make a historical link
unique, the time the path was published is added to the
path. Hence P3 in HP2 is identified as P3 + T1 and P3 in
HP3 is identified as P3 + T2. Similarly, a current path
may duplicate a path in the historical links, as is the case
of P1. By adding its published time, P1 + T3 is
distinguishable from the historical link P1 + T0. The
historical links of a web site before Ti are the union of
sets HP0 to HPi-1, (HP0 U HP1 U … U HPi-1). Assuming
Ti is the last time the web site has changed, then the web
site’s historical links are the unions of sets HP0 to HPi,
and the current links are VPi. The union of historical
links and the current links represents all the paths that

URLx

D1
 D11
 D12

D2

D31
D32

D33

URLA

URLB

Figure 1: Relationship between URLs and web documents.

a b.

T1 T2 T3 T4T0

Time

Historical links

Current links

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1210

are currently in use or have been used in the past. Every
link in the union is uniquely identified by the value
(path + path published time). This composite value is
an example of a Temporal URL (discussed in the next
section). For any path Px published at time T, the
temporal URL (Px + T) uniquely identifies a document
that is currently, or was once, associated with Px at time
T.

3.2 Solution Designs

This section explains the scheme to track the historical
links of a web site. The scheme has two major
components: logging the changes to web documents and
archiving deleted documents including document
snapshots. The log, named TemporalURLLog, is
designed to keep the history of changes to web
documents. It has four fields: URL, PublishDate,
ExpireDate, and NewURL. The URL field records a
document’s path; the PublishDate records the time the
document is published; the ExpireDate field records the
time this URL becomes invalid; should the change
create a new URL for the document, the NewURL field
records the document’s new URL and serves as a link to
chain all log entries related to the same document
together. This log has a composite key of URL +
PublishDate. The value of URL + PublishDate uniquely
identifies a document in a web site’s history. The
Archive is a directory that stores deleted files and
document snapshots. Those archived files are saved in
the Archive using URL + PublishDate as its file name.
The log is maintained according to the log maintenance
algorithm described below:

TemporalURLLog maintenance algorithm Changes
to web documents are recorded in the log by the
following rules:

New document: When a new document is added to the
web site, a new entry is entered with its path and the
time the document is published. The ExpireDate and
the NewURL are set to null. Hence, log entries with a
null ExpireDate are current document entries. Initially,
all current documents have an entry in the log with null
ExpireDate and null NewURL.

Deleted document: The log entry associated with the
document is the entry with the URL equal to the
document’s URL with a null ExpireDate. First, it
locates the entry and changes its ExpireDate to the time
the document is deleted. Then, it saves the deleted
document in the Archive with URL + PublishDate as its
file name.

Modified document: When a document is modified, its
old version becomes a snapshot and its new version is
treated as a new document. The log entry associated
with the document is the entry with the URL equal to
the document’s URL with a null ExpireDate. First, it
locates the entry and changes its ExpireDate to the time

the document is modified. Then, it saves the old version
in the Archive with URL + PublishDate as file name.
Then, it adds a new entry with the same URL and the
PublishDate is set to the time the document is modified.
The ExpireDate and NewURL are set to null.

Consequently, log entries with a non-null ExpireDate
and a null NewURL may be related to snapshots or
deleted documents. For such an entry, if there exists
another entry with the same URL and its PublishDate
equals to this entry’s ExpireDate then this entry is a
snapshot entry and the snapshot it associates with can be
retrieved from the Archive using URL + PublishDate as
its file name. The snapshot is valid from the
PublishDate to the ExpireDate. Otherwise, the entry is
associated with a deleted document which can be
retrieved from the Archive using URL + PublishDate as
its file name.

Relocated or renamed page: When a document is
relocated or renamed, its old URL is expired and a new
URL is created. The log entry associated with the
document is an entry with the URL equal to the
document’s URL and with a null ExpireDate. First, it
locates the entry and changes its ExpireDate to the time
the document is relocated or renamed and changes its
NewURL field to the document’s new URL. Then, it
adds a new entry with the new URL and the
PublishDate is set to the time the document is relocated
or renamed. Hence, log entries with a non-null
NewURL field help chain a document’s log entries.

Using this log maintenance algorithm for the changes
described in figure 2, the contents of the
TemporalURLLog are shown in Figure 3, with five files
in the Archive: P2T0, P3T0, P3T2, P5T1, and P3T3. With
the TemporalURLLog, a web server is able to determine
that:

 . A URL P2 valid between T0 and T1 is deleted,
and the document it pointed to is in the Archive with the
name P2T0.
 . A URL P3 has been modified repeatedly and
is eventually deleted. All documents associated with P3
can be found in the Archive.
 . An old URL P5 is now renamed to P7. It has
been modified on T3, and a copy of its snapshot can be
found in the Archive with the name P5T1.
 . The log is able to determine that a historical
link P1 is now renamed to P8.
 . A URL P12 has never existed in the web site.

URL PublishDate ExpireDate NewURL
P1 T0 T1 P4
P2 T0 T2 Null
P3 T0 T2 Null
P4 T1 T4 P8
P5 T1 T3 Null
P3 T2 T3 Null
P3 T3 T4 Null

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1211

P5 T3 T4 P7
P6 T3 Null Null
P1 T3 Null Null
P8 T4 Null Null
P7 T4 Null Null

Figure 3: The contents of TemporalURLLog based
on changes described in Figure 2.

3.3 Snapshot-retrieving algorithm

This section presents an algorithm for retrieving
document snapshots. The input to this algorithm is a
URL Px with a snaptime T. It assumes Px is a current
URL to simulate a scenario in which users who are
viewing a current document would like to view the
document’s snapshot at time T. The algorithm is
presented in [1] and is explained below.

It processes log entries backward starting from a
document’s current entry to trace back its changes in
order to locate the snapshot. If the current URL’s
PublishDate is less than T, then the current document
itself is its snapshot at T. Otherwise the backward
search starts. To trace back, an entry’s predecessor has
one of the following properties:

1. Its URL equals the current entry’s URL and its
ExpireDate equals the current entry’s PublishDate. This
indicates the predecessor is an old version of the
document and it is the document’s snapshot from the
predecessor’s PublishDate to its ExpireDate.

2. Its NewURL equals the current entry’s URL and
the ExpireDate equals the current entry’s PublishDate.
This indicates the predecessor has been renamed or
relocated.

Initially, the current document is treated as a candidate
for the snapshot. Before reaching past time T, whenever
an old version is found it becomes the new candidate for
the snapshot. Note that an old document’s life may span
before its PublishDate. If a document Y is originally
derived from a document X through a series of
renaming or relocation, then this document’s life span is
from document X’s PublishDate to document Y’s
ExpireDate. The search reaches the last entry when its
PublishDate is before T or it no longer has a predecessor.
If the last entry’s PublishDate is greater than T then
snapshot does not exist at T.

To illustrate, if a request P7 with snaptime T2 is
submitted, the backward search will pick up three
entries: (P7, T4, Null, Null), (P5, T3, T4, P7), and (P5, T1,
T3, Null). They show that the document associated with
P7 has been unchanged since T3 and was originally
associated with P5 and renamed to P7 at T4. The
document has been modified at T3. Therefore, the
algorithm returns Archive(P5 + T1) as a snapshot. If P7
with snaptime T3 is submitted, the backward search will
pick up two entries: (P7, T4, Null, Null)and (P5, T3, T4,
P7) and return Document(P7) as a snapshot.

If a request P8 with snaptime T0 is submitted, the
backward search will pick up three entries: (P8, T4, Null,
Null), (P4, T1, T4, P8) and (P1, T0, T1, P4). These show
that the document associated with P8 has been renamed
at T1 and T4. It has not been modified since T0. The
algorithm will return Document(P8) as a snapshot.

4. WEB DOCUMENT SNAPSHOTS DELIVERY
METHODS

This section discusses schemes for users to submit a
request for a snapshot. Such requests must include the
document’s URL and snaptime required by the
snapshot-retrieving algorithm. Three schemes for
submitting a request are proposed below:

Using TemporalURL A temporal URL is a URL
submitted with temporal requirements of which the
documents associated with the URL must meet [1]. A
typical way to submit additional information with a
URL is through query strings. A query string is a set of
name=value pairs appended to a URL. It is created by
adding a question mark (?) immediately after a URL
followed by name=value pairs separated by ampersands
(&). For instance, a Snaptime query string may be
defined as: Px?Snaptime=T to retrieve the web
document’s snapshsot at time T.

Problems with using TemporalURL are: (1)
implementing this scheme requires the web server be
changed to distinguish between requests for regular
documents and requests for snapshots. This causes
interruption for non-snapshot requests. (2) Users must
be informed of such service and be trained to use
temporal URL.

Using a snapshot management site This is a site
designed to handle snapshot requests. Its objectives are:
(1) educating users about the web document snapshot
systems and (2) providing interface to enter request for
snapshots. The interface can be a form with textboxes
to enter web document’s URL and snaptime. The
snapshot-retrieving algorithm can be implemented with
the server-side program that handles the form.

The advantage of this approach is that the web server
does not need to change its behavior because of
snapshots.

Using web services A web service is an application
logic accessible via the Internet [9]. It is defined as a
function that takes inputs from its arguments to perform
a task. It uses standard Internet protocols such as HTTP
and SOAP for communication. Inputs to a web service
can be submitted with HTTP GET, or HTTP POST, or
enclosed in a SOAP Envelop encoded in XML. The
output from the web service is typically returned in a
SOAP Envelop encoded in XML. The inputs and
outputs are all in text format. A web service can be

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1212

accessed from a browser. In this mode, it will provide
an interface page with textboxes to enter inputs to the
service along with an information page explaining input
data type. It can also be integrated in an application
where it is referenced as a component. In this mode, it
is used as a function where the application provides
inputs through its arguments.

The snapshot-retrieving algorithm can be implemented
as a web service that takes URL and snaptime as its
inputs and returns the document snapshot as output.
Because web services communicate in text, the snapshot
returns to the user will be in text format. This implies
that it is the web document’s code that is sent to the user,
not the web page as displayed with a browser. Hence
any server-side program in the web document is unable
to run. Therefore, it is a level 1 snapshot.

5. SUMMARY

Web document snapshots are useful for archiving or
performing business analysis with historical data. This
paper defined four levels of snapshot contents where the
level 1 and level 2 snapshots involve resources managed
by the web site, and level 3 and level 4 involve
resources not managed by the web site. This paper
proposes a web document snapshot management system
designed to deliver level 2 snapshots. The system
consists of a Database Snapshot Manager for providing
database snapshots and a Web Document Snapshot
Manager for providing web document snapshots.
Algorithms supporting the two managers are presented.
These algorithms use logs with time stamps to record
changes to the database and web documents. With the
logs, snapshots can be generated dynamically when
requested. Three types of interface between the web
site and users regarding snapshot delivery are proposed:
temporal URL, snapshot handling site, and web service.
With the proposed snapshot management system, a web
site is able to deliver snapshots with dynamic contents.

REFERENCES

 [1] Chao, D. (2003). Tracking a Web Site’s Historical
Links with Temporal URLs. Proceedings of the 3rd
International Conference on Electronic Business,
Singapore, 2003.
[2] Chao, D., Diehr, G., & Saharia, A. (1996)
Maintaining Join-based Remote Snapshots Using
Relevant Logging. Proceedings of the Workshop on
Materialized Views, ACM SIGMOD, Montreal, Canada,
1996.
[3] Chien, S., Tsotras, V., & Zaniolo, C. (2001)
Efficient Management of Multiversion Documents by
Object Referencing. Proceedings of 13th International
Conference on Very large Data Bases, 2001.
[4] Labrinidis, A. & Roussopoulos, N. (2000).
Webview Materialization. ACM SIGMOD International
Conference on Management of Data, May 14-19, 2000.
[5] Marian, A., Gregory Cobena, S., & Mignet, L
(2001) Change-Centric management of Versions in an
XML Warehouse. Proceedings of the 27th VLDB
Conference, Rome, Italy, 2001.
[6] Smithsonia Institution, “Archiving Smithsonia
Websites”,
http://www.si.edu/archives/archives/websitepilot.html#i
ntro (May 2003)
[7] U.S. National Archives & Record
Administration, “Federal Web Site Snapshot
Information”,
http://www.archives.gov/records_management/web_site
_snapshot/snapshot.html,
[8] Utah State Government, “Draft Electronic
Records Policy”,
http://www.archives.state.ut.us/recmanag/electronicpoli
cy.htm, Feb. 2002
[9] W3C World Wide Web Consortium, “Web
Services Architecture”, http://www.w3.org/TR/ws-arch,
Feb. 2004

