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ABSTRACT

In this paper, we consider the e-booking control problem which includes optimal pricing and capacity allocation. In
pricing model, customers may refuse bookings based on their willingness to pay the quoted price. Since customer
behavior and characteristics are highly varying and not known in advance, we develop a stochastic pricing model which
tracks customer behavior as well as the arrival process to maximize profit. For the multi-period capacity allocation of
e-booking control problem, we present a two-stage stochastic mixed integer programming model and a heuristic
algorithm. The solution to the model is found by maximizing the expected profit over the possible control decisions
under the uncertainty of shipping capacity. Finally, we give numerical experiments demonstrate the efficiency of the

algorithm.
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1. INTRODUCTION

Alliances and partnerships are prevailing characteristics
of the container shipping industry. A brutally competitive
environment, low freight rates, and the need for carriers
to increase their revenue have led to joint carrier
operations. Carriers have to band together in operating
alliances with the objectives of improving capacity
utilization and more service flexibility. Unfortunately,
this consolidation has not resulted in upward pressure on
shipping rates, nor has it increased profitability for the
carriers involved. The high cost of capital equipment and
low rates of return that characterize container shipping
compel carriers seek out every opportunity to improve
their own with respect to operational efficiency and
performance (see [3], [5]).

Effective booking control is a key to improved revenues
and reduced container shipping costs and it has become
more important when the container shipping industry has
widely adopted information technologies. E-booking
service supports e-business strategy for container
shipping industry, which aims to make business
processes easier and more cost efficient. As a part of sea
cargo e-commerce strategy, web-based e-booking system
enables the customer to electronically book shipments
and to channel other shipment requirements to the carrier,
such as cargo collection, delivery requests, and
information required for customs clearance. In general,
e-bookings may be made up to 30 days in advance. The
customers can specify the number and type of containers
needed, and service time windows at the origin and
destination locations. Minimally, the time window
information must include the earliest time containers
may be loaded at the origin, and the latest time
containers should be delivered to the destination. The
objective of e-booking service is to help customers enjoy
the competitive advantage of the Internet and provide an
efficient, flexible and fast way of doing business.
Customer Service staff can also help customers with
more complicated bookings that require special expertise.

The whole industry-shippers, forwarders, carriers and
consignees-benefit from minimizing or eliminating
duplicate data entry. It makes the shipment process more
transparent and improves the accountability of service
provide. This means that the monthly freight schedule
booking process can be done by pressing one button. A
new e-business strategy will improve customer service
and efficiency for both carriers and their customers. This
move to a more efficient and effective way of making
cargo booking is an important part of operational level
service route planning in container shipping industry.

To obtain service, customers first check the price quote
for a given origin-destination service in e-booking
website, and then subsequently make bookings under the
quote. With the exception of certain ancillary charges,
the carrier charges the customer a fixed price for
transportation, and pays the transportation service
providers directly out of this fee. Therefore, it is in the
carrier's interest to minimize the transportation costs for
most shipments. However, there must be a level of
“reasonableness” in transit times, and some customers
may be willing to pay a premium for faster service.

In this paper, we consider the e-booking control problem
in the container shipping industry, which includes pricing
and capacity allocation. The pricing and revenue
management problem is formulated as nonlinear
programming in which some parameters obtained from
stochastic marked point process. The capacity allocation
problem is formulated as two-stage stochastic mixed
integer programming model which accounts for total
profit in multi-period and constraints of limited shipping
capacity. Efficient algorithms for the models and
numerical experiments are proposed at last. The rest of
the paper is organized as follows. The problem
formulation and algorithm are described in Section 2.
Empirical results are given in Section 3. We conclude the
paper in Section 4.
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2. PROBLEN FORMULATION

2.1. Pricing and Revenue Management

Consider an e-booking system for an ocean liner operator.

Cargo bookings arrive at the system according to a
compound Poisson process {X(t)};=. Its jump times Ty,
Ty, Ts, ... form a Poisson process with rate A >0, and the
jump magnitudes Y1, Yy, Y3, ...are i.i.d. random variables
with Pareto distribution. The Pareto principle states that a
large income stems from a very small number of
customers. It is reasonable to assume that the fright

volume of a booking follows Pareto distribution (see [1]).

The Pareto probability density function with shape

parameter a >1 and scale parameter b >0 is defined as
a

ab
FOO=—Zr
X

Figure 1 illustrates the Pareto probability density
function for different values of shape a and scale b=40.
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Figure 1. Pareto probability density function

When the quoted price is p, an arrival customer may
accept or reject the price. Let & be the binary random
variable, i.e., & =1 if the arrival customer accepts the
quoted price; & =0, otherwise. We assume that the
random variable & is independent of booking arrival
process and the probability that an arriving customer
accepts the quoted price p is a decreasing and
differentiable function of p. The probability is chosen as

g (p)=1—(§)5,for p<o @

where & and @are constants. By varying the parameter
o0, we can make the willingness as elastic as desired.
The lower the value of parameter 0 , the more willing are
customers to book under the quoted price. Figure 2
shows the function g(p) for different values of parameter
6 and 6=10. The total profit in time t is:

Z(t)= ZYilosTi <t p1§=l )
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Figure 2. Probability of acceptance under quoted price p

Let total available capacity is C. Then we formulate the
pricing and revenue management problem for single
cargo type and single period as following nonlinear
programming (M1):

Maximize EZ (t) = E Y1, Pl )
i=1
subject to

EZY 10<T alea S ®)

Obviously, stochastlc process {Z(t)}t>0is a marked point
process and the expectation of Z(t) is (for details of
marked point process, see [2]):

EZ(t) = EY, -Mp-P{cle}
By @
Similarly,
Ei:\(ilogigl,g=1 ab’ﬂ[l C, Y1 o

In the following theorem, we give the opt1ma1 of above
nonlinear programming.

Theorem 2.1. The optimal solution of the nonlinear
programming (M1) is

p* = max(p,p) (8)

where

A = c@-1.s

= d = — .

P (5 +1)7° and p=0ll abit |
Proof. Let

bAt bAt

m(p)—a p[l—( Py1 mpy=2 (g Pyey,

then we easily Verlfy that the function 771(p)
concave in (0, +o0) and it takes maximum at point:

A 0
G ”

On the other hand, the function 77,(P) is decreasing in
(0, 0) and it takes zero at point:

= c@="Dws
=0[1--—= (10)
p=d abt )
Therefore, the optimal solution of non-linear

programming (M1) is p* = max(p,p).
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2.2. Capacity Allocation

We assume that the capacity allocation decisions (for the
entire planning horizon) have to be made, with only
some knowledge of future scenarios of parameters. The
overall objective is to determine a capacity allocation
plan, such that the sum of each expected profit is
maximized. To incorporate the uncertainty in the
parameters, we assume that these parameters can be
realized as one of S scenarios. The probability of

scenario S will be denoted by p°.

Before formally stating the problem, we introduce some
notation:

Index Sets
f:setoftimeperiods 1,2, t,--,T}.
Kt: set of all cargoes received in period T, ie.

K'[ = {19 25”'aka"'9 Kt}

S : set of all scenarios {L2,:-,8,--+,S}.

Deterministic Parameters

Iq : per volume profit of cargo K which is received in
period t and delivered in period d . It can be
interpreted as the per volume net profit of cargo K, i.e.,

per volume profit of cargo K minus its per volume
inventory cost.
7, : due date of cargo K . Each cargo has its due date

requested by shipper in its booking status.

Vy, : the volume of cargo K received in period t
k

ready for delivery before its due date 7, .

Wy, weight of cargo K received in period t ready

for delivery before its due date 7, .

Random Data

V,*: total available volume capacity in period t under
scenario S.

W,®: maximum allowable weight capacity in period t
under scenario S.

qg, : overage cost per unit overage of volume capacity in
period d under scenario S.

qu: shortage cost per unit short of volume capacity in
period d under scenario S.

qj , - overage cost per unit overage of weight capacity in
period d under scenario S.

qj .- shortage cost per unit short of weight capacity in

period d under scenario S.

Decision Variables

Xyq : binary variable, i.e., X, = 1 if cargo K is
received in period t and is ready for delivery in period
d before its due date 7, , 0, otherwise.

Y, : amount of overage of available volume capacity in

period d .
Y4, : amount of shortage of available volume capacity in

period d .
Y45 : amount of overage of allowable weight capacity in

period d .
Y4, : amount of shortage of allowable weight capacity in

period d .
The multi-period capacity allocation problem can then be

formulated as following two-stage stochastic mixed
integer programming model (M2):

T Ty
Maiximizez =" >V, TyaXyq —ZS: p*Q(x) (D
K, s=1

t=1 keK, d=t
subject to

dxg <1 VteT, kekK, (12)
4t

Xyq €10,1}, (13)

For VteT, kelzt, deft,t+1,---,7.},
where for all S,

T 4
Q°(x) = Minimize > >" a5y, (14)
d=1 i=l
subject to
d ~
Yar — Ya2 ZVdS_Z thkrkxlkd vdeT (15
=1 KeR,
7 >d

d ~
Yas = Yau =W5 =D D Wy, Xy VdeT (16)

t=1 keK,
7 2d

where all y, are non-negative for d ef, i=1,2,3,4.

Because all random variables in (M2) are discretely
distributed, and their joint distribution has a finite
number of realizations, (M2) can be rewritten as the
following large-scale mixed integer programming model

M3):
T Tk
Maximize z =) Z 2 Vics, T Xug
t=1 keK, d=t
S T 4
—Z p° Ui Yei a7
s=1 d=1 i=1
subject to
Ty _~ ~
D X <1 VteT, keK, (18)
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d
- thkrk Xia » (19)

t=1 keK,
7.>d

for vdeT, jel, seS
Yas = Yas =Wg — ZZ e, Xtd (20)

t=1 keK,
7 =d

for VdeT, seS
where X, €{0,1},for VteT, keK,,
def{t,t+1,---,
seS,deT,i=12,3,4.

y;1 - y§2 zvds

7.} andall yj are non-negative for

A common attitude in solving NP-hard combinatorial
optimization problems (see [4]) is to not insist on
optimality but dedicate research efforts to designing fast
and high quality approximation methods. A greedy
algorithm is chosen for solve the problem (M3). Its
robust and implicit enumerative character ensures to
achieve the optimal solution or a near optimal solution.
In cases like this we can sacrifice the guarantee of
optimality that is provided by it in favor of getting a
reasonable answer quickly.

'SESN} :SE§} ,

SES} tkr

Let E; =min{E]
W, = min{W,’ :
77 d

Vvtk‘r = tk‘r /W

programming as follows (M4):

V, =min{V;
Vtkrk /Vd >

Then, we get a binary integer

T Tk
Maximize z = z Vicr, Fica e @h
t=1 ¢ d=t

subject to

thkdﬁl vieT, kek, (22)
d=t
Z DV X <1 vdeT (23)
llkeKt
7 2d
d ~
D D Wy Xyg S VA eT 24)
t=1 keK,
7 2d
where X,, €{0,1}, de{t,t+1,--, 7}, VteT,

keizt,

Toyoda’s heuristic for the Multi-Dimensional Knapsack
Problem (MDKP) (see [6]) starts with no items (or all X’s
being zero), and adds one item at a time iteratively as
long as the solution is feasible. Following his approach,
we propose a heuristic algorithm EBHA that provides a
near-optimal solution to (M2) by means of concepts such
as penalty vector and effective gradient introduced in [6].
The heuristic mixed

algorithm for the integer

programming (M3) is presented as follows.
Algorithm EBHA:

Step 1: Initialization.
Stepl.l:Letz«0, 2«0, X, <0,

Step 1.2: Let K, <~ ¢, where K

accepted items.
Step 1.3: Assign all items to K, =K — K, where

Ky is the set of
K={k:kelzt,tef}.
Step 1.4: Let Aj < (0,0), where Aj is the total

quantity vector of accepted items in period d .
Step 2: Let K. «—{k:keK,,3d <7, st.

(Vtkrk tkrk) LD- Ajjk} where K. is

the set of candidate items.
Step 3: Check K. .If K, isempty, goto Step 7.

Otherwise, proceed to the next step.

Step 4: Let K. ={(k,d):keK,,
(Ve » Wier, ) < (L, 1)~ AT}
Step 4.1: If A‘j is a zero vector, then we set

V2 Vikr, Fika

d wrd
Vtkrk + tkry

Step 4.2: Otherwise, let K§ = {k’: k' € Ky, Xy g =1},
for(k,d) e K., we set

Vie, Nk (thkr) +(Z b

Xyg < 0.

is the set of

items not in K, and

Gy < for (k,d) e K,

k'ekd k'ekd
Gy « )
tkr thkr +Wtkr Z tk'z)
kEKU keKU

Step 5: Find that item K whose effective gradient is the
largest in a period, i.e.,
G, =max{G,, :(k’,d") e K.}.
Step 6: Accept K. Let K, « K, +{k},
AJ <« A.J + (Vtkrk

—{k}, X, < 1. Then, goto Step 2.

Xid € Xy »

tkrk)’ L4 Z+Vy, Fyq>
Ky < Kp
Step 7: Let 7« 2,

d ~ ~
Yor < Vo =D D Vyo Xyq» Vd €T, s€S,

t=1 keK,
7 >d

Yos < Wg - ZZ e Xua» VA €T, 5€S,

t=1 keK,
7 2d
S T
S S S S S
1< 12 _Z p Z(qdlydl + qd3yd3) ’
s=1 d=1
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217, Ryq < Xuq»
for teT, ke Kt, def{t,t+1,---,7.}.

Step 8: If K, = ¢, the procedure terminates. Otherwise,
let z«0, y; <« 0, for seS, deT, jej
i =1,2,3,4, and proceed to the next step.
Step 9: we set

0.125 vy, Ty
—d

Y

tkzy
Step 10: Let G, «— max{G,, :k' € K,

deft,t+1---,7,}}.
Step 11: Let K «— Ky —{k}, X4 < 1.

R Jfor ke K.

o d
+ Wtkrk

- - d
Step 12: For d eT,s€5,if Vi 2D Svy Xy

t=1 keK,
7y >d

d
S S
then y& «V, _z zvtkfk Xia ?

t=1 keK,
7. >d

d
1 S S .
otherwise, yi, « Z thkrk Xyg — Vg >

t=1 keK,
7 2d

d
i WS 2D W, Xy - then

t=1 keK,
7 >d

d
Yas < Wy - Z zwtkrk Xid

t=1 keK,
7 2d

d
1 S S .
otherwise, yI, « § , § Wi, Xig =Wy >

t=1 keK,
7 =d

T Tk S T 4
S
2620 D0 D Vue, TuaXua = 2, P
t=1 keK, d=t s=1 d=li=l
Step 13:if Z2<Z,thenZ <=2, Ry < Xyq -

s Yai

Otherwise, X, < 0.
Step 14: If K, = @, the procedure terminates.
Otherwise, let Z«—0, y5 « 0, for se S,
deT, je J, i=1,2,3,4, and goto Step 10.

3. EMPIRICAL RESULTS

In this section, we implement the heuristic algorithm
EBHA and compare its solution to optimal solution or LP
(relaxation) optimal solution (as the upper bound for
optimal solution). The algorithm has been coded in C++
and run under Microsoft Windows Server 2003 Standard
Edition using a Server (Intel(R) Xeon(TM) CPU
3.06GHz and 1.0GB of RAM). CPU times were obtained
through the C++ function clock(). To conduct our
experiments we used randomly generated instances.

For each set of parameters T and K, we generated 10
random small scale instances, for which optimal
solutions can be obtained by CPLEX 8.0. We tested
heuristic solutions and optimal solutions or LP optimal
solutions for all 10 instances, and tabulated the average
relative gap and average computation time. Let z,p be the
optimum of LP relaxation, zy be the lower bound by
heuristic and zg be the optimum of the problem. In table

1, the relative gap { is defined as
(o -2y4)/ 25 x100%.
In table 1 and table 2, the relative gap §, is defined as
(Zp-24) /25 x100% .
Table 1 shows the results obtained for a set of small test
problems. Test problems 1 have 2 scenarios, 2 periods
and 150 items (cargoes); test problem 2 has 3 scenarios,
3 periods, 4 destination ports and 71 items, and so on.
For comparison, the optimal solution has been computed
using CPLEX 8.0. As can be seen from table 1, the
obtained results seem to be encouraging. The gap
between the optimal solution and the heuristic solution is
small and the computation time is very short. Table 2

shows the results obtained for a set of large scale
problems.

From our preliminary computation experiment, we
believe that heuristic algorithm would be a very good
candidate for solving the problem in time critical or
real-time applications such as capacity allocation in
e-booking control problem where a near optimal solution
is acceptable, and fast computation is more important
than guaranteeing optimal value.

4. SUMMARY

Critical to the e-booking control problem is
understanding sea fright marketing environment and
optimization technique, its impact on the utilization of
available capacity and service route planning for liner
operator. Since customer behavior and characteristics are
highly varying and not known in advance, we develop a
stochastic pricing model which tracks customer behavior
as well as the arrival process to maximize profit. On the
other hand, we have formulated the capacity allocation
problem as the two-stage stochastic mixed integer
programming model, and presented effective heuristic
algorithm which provide fast and near optimal solution.
We also presented experimental results to evaluate the
algorithm using a wide range of problem instances. The
results strongly suggest that the heuristic algorithm is
very effective for time critical tactical or operations level
decisions, where a near optimal solution is acceptable
and fast computation is more important than
guaranteeing optimal value.
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3 0,
Number of Number of Instances Average relative gap (%)
S T K . .
variables constraints tested
9 9.
2 2 126 268 134 10 0.13 0.22
2 3 121 387 133 10 0.21 0.46
3 4 101 452 125 10 0.78 1.93
4 8 43 472 107 10 1.34 2.41
3 5 91 515 121 10 1.11 1.76
3 7 63 525 105 10 1.26 2.22
Table 1. Results for small test problems
Average Av.erage CPU
s|T K Number of | Number of | Instances relative gap time (sec)
variables constraints tested 9, %)
LA Heuristic LP
313 586 1794 604 10 0.73 0.48 393.79
516 286 1836 346 10 2.34 0.28 45.08
46| 473 2934 521 10 1.22 0.86 146.02
317 464 3332 506 10 1.34 0.77 147.74
314 886 3592 910 10 0.86 1.47 674.78
4 |8 764 6240 828 10 1.12 2.33 2084.95
Table 2. Results for large scale problems
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