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ABSTRACT 

In this paper, we consider the e-booking control problem which includes optimal pricing and capacity allocation. In 
pricing model, customers may refuse bookings based on their willingness to pay the quoted price. Since customer 
behavior and characteristics are highly varying and not known in advance, we develop a stochastic pricing model which 
tracks customer behavior as well as the arrival process to maximize profit. For the multi-period capacity allocation of 
e-booking control problem, we present a two-stage stochastic mixed integer programming model and a heuristic 
algorithm. The solution to the model is found by maximizing the expected profit over the possible control decisions 
under the uncertainty of shipping capacity. Finally, we give numerical experiments demonstrate the efficiency of the 
algorithm. 
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1. INTRODUCTION 
 

Alliances and partnerships are prevailing characteristics 
of the container shipping industry. A brutally competitive 
environment, low freight rates, and the need for carriers 
to increase their revenue have led to joint carrier 
operations. Carriers have to band together in operating 
alliances with the objectives of improving capacity 
utilization and more service flexibility. Unfortunately, 
this consolidation has not resulted in upward pressure on 
shipping rates, nor has it increased profitability for the 
carriers involved. The high cost of capital equipment and 
low rates of return that characterize container shipping 
compel carriers seek out every opportunity to improve 
their own with respect to operational efficiency and 
performance (see [3], [5]).  
 
Effective booking control is a key to improved revenues 
and reduced container shipping costs and it has become 
more important when the container shipping industry has 
widely adopted information technologies. E-booking 
service supports e-business strategy for container 
shipping industry, which aims to make business 
processes easier and more cost efficient. As a part of sea 
cargo e-commerce strategy, web-based e-booking system 
enables the customer to electronically book shipments 
and to channel other shipment requirements to the carrier, 
such as cargo collection, delivery requests, and 
information required for customs clearance. In general, 
e-bookings may be made up to 30 days in advance. The 
customers can specify the number and type of containers 
needed, and service time windows at the origin and 
destination locations. Minimally, the time window 
information must include the earliest time containers 
may be loaded at the origin, and the latest time 
containers should be delivered to the destination. The 
objective of e-booking service is to help customers enjoy 
the competitive advantage of the Internet and provide an 
efficient, flexible and fast way of doing business. 
Customer Service staff can also help customers with 
more complicated bookings that require special expertise. 

The whole industry-shippers, forwarders, carriers and 
consignees-benefit from minimizing or eliminating 
duplicate data entry. It makes the shipment process more 
transparent and improves the accountability of service 
provide. This means that the monthly freight schedule 
booking process can be done by pressing one button. A 
new e-business strategy will improve customer service 
and efficiency for both carriers and their customers. This 
move to a more efficient and effective way of making 
cargo booking is an important part of operational level 
service route planning in container shipping industry. 
 
To obtain service, customers first check the price quote 
for a given origin-destination service in e-booking 
website, and then subsequently make bookings under the 
quote. With the exception of certain ancillary charges, 
the carrier charges the customer a fixed price for 
transportation, and pays the transportation service 
providers directly out of this fee. Therefore, it is in the 
carrier's interest to minimize the transportation costs for 
most shipments. However, there must be a level of 
“reasonableness” in transit times, and some customers 
may be willing to pay a premium for faster service. 
 
In this paper, we consider the e-booking control problem 
in the container shipping industry, which includes pricing 
and capacity allocation. The pricing and revenue 
management problem is formulated as nonlinear 
programming in which some parameters obtained from 
stochastic marked point process. The capacity allocation 
problem is formulated as two-stage stochastic mixed 
integer programming model which accounts for total 
profit in multi-period and constraints of limited shipping 
capacity. Efficient algorithms for the models and 
numerical experiments are proposed at last. The rest of 
the paper is organized as follows. The problem 
formulation and algorithm are described in Section 2. 
Empirical results are given in Section 3. We conclude the 
paper in Section 4. 
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2. PROBLEN FORMULATION 
 
2.1. Pricing and Revenue Management 

 
Consider an e-booking system for an ocean liner operator. 
Cargo bookings arrive at the system according to a 
compound Poisson process {X(t)}t≥0. Its jump times T1, 
T2, T3, … form a Poisson process with rate λ>0, and the 
jump magnitudes Y1, Y2, Y3, …are i.i.d. random variables 
with Pareto distribution. The Pareto principle states that a 
large income stems from a very small number of 
customers. It is reasonable to assume that the fright 
volume of a booking follows Pareto distribution (see [1]). 
The Pareto probability density function with shape 
parameter a >1 and scale parameter b >0 is defined as 

1)( += a

a

x
abxf , for bx ≥           (1) 

Figure 1 illustrates the Pareto probability density 
function for different values of shape a and scale b=40. 
 

 
Figure 1. Pareto probability density function 

 
When the quoted price is p, an arrival customer may 
accept or reject the price. Let ξ be the binary random 
variable, i.e., ξ=1 if the arrival customer accepts the 
quoted price; ξ=0, otherwise. We assume that the 
random variableξ is independent of booking arrival 
process and the probability that an arriving customer 
accepts the quoted price p is a decreasing and 
differentiable function of p. The probability is chosen as 

δ

θ
)(1)( ppg −= , for θ≤p       (2) 

whereδ andθ are constants. By varying the parameter 
δ , we can make the willingness as elastic as desired. 
The lower the value of parameterδ , the more willing are 
customers to book under the quoted price. Figure 2 
shows the function g(p) for different values of parameter 
δ and θ=10. The total profit in time t is: 

10
1

11)( =≤≤

∞

=
∑= ξpYtZ tT
i

i i
           (3) 

 

 
Figure 2. Probability of acceptance under quoted price p 

 
Let total available capacity is C. Then we formulate the 
pricing and revenue management problem for single 
cargo type and single period as following nonlinear 
programming (M1): 
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Obviously, stochastic process {Z(t)}t≥0 is a marked point 
process and the expectation of Z(t) is (for details of 
marked point process, see [2]): 
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In the following theorem, we give the optimal of above 
nonlinear programming. 
 
Theorem 2.1. The optimal solution of the nonlinear 
programming (M1) is 
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Proof. Let  
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then we easily verify that the function )(1 pη  is 
concave in (0, +∞) and it takes maximum at point: 
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On the other hand, the function )(2 pη  is decreasing in 
(0, θ) and it takes zero at point: 
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Therefore, the optimal solution of non-linear 
programming (M1) is ),ˆmax(* ppp = . 
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2.2. Capacity Allocation 
 
We assume that the capacity allocation decisions (for the 
entire planning horizon) have to be made, with only 
some knowledge of future scenarios of parameters. The 
overall objective is to determine a capacity allocation 
plan, such that the sum of each expected profit is 
maximized. To incorporate the uncertainty in the 
parameters, we assume that these parameters can be 
realized as one of S scenarios. The probability of 
scenario s  will be denoted by sp . 
 
 Before formally stating the problem, we introduce some 
notation: 
 
Index Sets 
T~ : set of time periods },,,,2,1{ Tt LL .  

tK~ : set of all cargoes received in period t , i.e. 

=tK~ },,,,2,1{ tKk LL .  

S~ : set of all scenarios },,,,2,1{ Ss LL . 
 
Deterministic Parameters 

tkdr : per volume profit of cargo k  which is received in 

period t  and delivered in period d . It can be 
interpreted as the per volume net profit of cargo k , i.e., 
per volume profit of cargo k  minus its per volume 
inventory cost. 

kτ : due date of cargo k . Each cargo has its due date 
requested by shipper in its booking status. 

ktkv τ : the volume of cargo k  received in period t  

ready for delivery before its due date kτ . 

ktkw τ : weight of cargo k  received in period t  ready 

for delivery before its due date kτ . 
 
Random Data 

s
tV : total available volume capacity in period t  under 

scenario s . 
s

tW : maximum allowable weight capacity in period t  
under scenario s . 

s
dq 1 : overage cost per unit overage of volume capacity in 

period d  under scenario s . 
s
dq 2 : shortage cost per unit short of volume capacity in 

period d  under scenario s . 
s
dq 3 : overage cost per unit overage of weight capacity in 

period d  under scenario s . 
s
dq 4 : shortage cost per unit short of weight capacity in 

period d  under scenario s . 
 

Decision Variables 

tkdx : binary variable, i.e., 1=
ktkdjx  if cargo k  is 

received in period t  and is ready for delivery in period 
d  before its due date kτ , 0, otherwise. 

1dy : amount of overage of available volume capacity in 

period d . 

2dy : amount of shortage of available volume capacity in 

period d . 

3dy : amount of overage of allowable weight capacity in 

period d . 

4dy : amount of shortage of allowable weight capacity in 

period d . 
 
The multi-period capacity allocation problem can then be 
formulated as following two-stage stochastic mixed 
integer programming model (M2): 
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where all diy  are non-negative for ,~Td ∈ i=1,2,3,4. 
 
Because all random variables in (M2) are discretely 
distributed, and their joint distribution has a finite 
number of realizations, (M2) can be rewritten as the 
following large-scale mixed integer programming model 
(M3): 
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for SsTd ~,~ ∈∈∀  

where }1,0{∈tkdx , for ,~Tt∈∀  ,~
tKk∈  

},,1,{ kttd τL+∈  and all s
diy  are non-negative for 

.4,3,2,1,~,~
=∈∈ iTdSs  

 
A common attitude in solving NP-hard combinatorial 
optimization problems (see [4]) is to not insist on 
optimality but dedicate research efforts to designing fast 
and high quality approximation methods. A greedy 
algorithm is chosen for solve the problem (M3). Its 
robust and implicit enumerative character ensures to 
achieve the optimal solution or a near optimal solution. 
In cases like this we can sacrifice the guarantee of 
optimality that is provided by it in favor of getting a 
reasonable answer quickly.  
 
Let }~:min{ SsEE s

dd ∈= , }~:min{ SsVV s
dd ∈= , 

}~:min{ SsWW s
dd ∈= , dtk
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tk Vvv
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tk Www
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/ττ = . Then, we get a binary integer 
programming as follows (M4): 
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where }1,0{∈tkdx , },,1,{ kttd τL+∈ , Tt ~∈∀ , 

tKk ~∈ ,  
 
Toyoda’s heuristic for the Multi-Dimensional Knapsack 
Problem (MDKP) (see [6]) starts with no items (or all x’s 
being zero), and adds one item at a time iteratively as 
long as the solution is feasible. Following his approach, 
we propose a heuristic algorithm EBHA that provides a 
near-optimal solution to (M2) by means of concepts such 
as penalty vector and effective gradient introduced in [6]. 
 
The heuristic algorithm for the mixed integer 

programming (M3) is presented as follows. 
 
Algorithm EBHA: 
 
Step 1: Initialization. 
Step 1.1: Let 0←z , 0ˆ ←z , 0←tkdx ， 0ˆ ←tkdx .  

Step 1.2: Let φ←UK , where UK  is the set of 
accepted items.  
Step 1.3: Assign all items to UD KKK −= , where 

DK is the set of items not in UK  and 

}~,~:{ TtKkkK t ∈∈= . 

Step 1.4: Let )0,0(←d
UA , where d

UA  is the total 

quantity vector of accepted items in period d . 
Step 2: Let ..,:{ tsdKkkK kDC τ≤∃∈←  
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d
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d
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the set of candidate items. 
Step 3: Check CK . If CK is empty, goto Step 7. 
 Otherwise, proceed to the next step. 
Step 4: Let ,:),{( DC KkdkK ∈=  
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d
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Step 4.1: If d
UA  is a zero vector, then we set 
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Step 5: Find that item k whose effective gradient is the 
largest in a period, i.e., 

}),(:max{ Cdkkd KdkGG ∈′′= ′′ . 

Step 6: Accept k . Let }{kKK UU +← ,  
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d
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zz ←ˆ , tkdtkd xx ←ˆ ,  

     for },,1,{,~,~
kt ttdKkTt τL+∈∈∈ . 

Step 8: If φ=DK , the procedure terminates. Otherwise, 

let 0←z , 0←s
diy , for Ss ~

∈ , Td ~∈ , Jj ~∈ , 
4,3,2,1=i , and proceed to the next step. 

Step 9: we set 
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Step 13: if zz <ˆ , then zz ←ˆ , tkdtkd xx ←ˆ .  

Otherwise, 0←tkdx . 

Step 14: If φ=DK , the procedure terminates.  

Otherwise, let 0←z , 0←s
diy , for Ss ~

∈ ,  

Td ~∈ , Jj ~∈ , 4,3,2,1=i , and goto Step 10. 
 

3. EMPIRICAL RESULTS 
 

In this section, we implement the heuristic algorithm 
EBHA and compare its solution to optimal solution or LP 
(relaxation) optimal solution (as the upper bound for 
optimal solution). The algorithm has been coded in C++ 
and run under Microsoft Windows Server 2003 Standard 
Edition using a Server (Intel(R) Xeon(TM) CPU 
3.06GHz and 1.0GB of RAM). CPU times were obtained 
through the C++ function clock(). To conduct our 
experiments we used randomly generated instances.  

For each set of parameters T and K, we generated 10 
random small scale instances, for which optimal 
solutions can be obtained by CPLEX 8.0. We tested 
heuristic solutions and optimal solutions or LP optimal 
solutions for all 10 instances, and tabulated the average 
relative gap and average computation time. Let zLP be the 
optimum of LP relaxation, zH be the lower bound by 
heuristic and zO be the optimum of the problem. In table 
1, the relative gap Og  is defined as 

100%z/)z-(z OHO × . 

In table 1 and table 2, the relative gap Lg  is defined as 
100%z/)z-(z LPHLP × . 

Table 1 shows the results obtained for a set of small test 
problems. Test problems 1 have 2 scenarios, 2 periods 
and 150 items (cargoes); test problem 2 has 3 scenarios, 
3 periods, 4 destination ports and 71 items, and so on. 
For comparison, the optimal solution has been computed 
using CPLEX 8.0. As can be seen from table 1, the 
obtained results seem to be encouraging. The gap 
between the optimal solution and the heuristic solution is 
small and the computation time is very short. Table 2 
shows the results obtained for a set of large scale 
problems.  
 
From our preliminary computation experiment, we 
believe that heuristic algorithm would be a very good 
candidate for solving the problem in time critical or 
real-time applications such as capacity allocation in 
e-booking control problem where a near optimal solution 
is acceptable, and fast computation is more important 
than guaranteeing optimal value.  
 

4. SUMMARY 
 
Critical to the e-booking control problem is 
understanding sea fright marketing environment and 
optimization technique, its impact on the utilization of 
available capacity and service route planning for liner 
operator. Since customer behavior and characteristics are 
highly varying and not known in advance, we develop a 
stochastic pricing model which tracks customer behavior 
as well as the arrival process to maximize profit. On the 
other hand, we have formulated the capacity allocation 
problem as the two-stage stochastic mixed integer 
programming model, and presented effective heuristic 
algorithm which provide fast and near optimal solution. 
We also presented experimental results to evaluate the 
algorithm using a wide range of problem instances. The 
results strongly suggest that the heuristic algorithm is 
very effective for time critical tactical or operations level 
decisions, where a near optimal solution is acceptable 
and fast computation is more important than 
guaranteeing optimal value.  
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Average relative gap (%) 
S T K Number of 

variables 
Number of 
constraints

Instances 
tested 

Og  Lg  

2 2 126 268 134 10 0.13 0.22 
2 3 121 387 133 10 0.21 0.46 
3 4 101 452 125 10 0.78 1.93 
4 8 43 472 107 10 1.34 2.41 
3 5 91 515 121 10 1.11 1.76 
3 7 63 525 105 10 1.26 2.22 

 
Table 1. Results for small test problems 

 
 

Average CPU 
time (sec) 

S T K Number of 
variables 

Number of 
constraints

Instances 
tested 

Average 
relative gap 

Lg  (%) 
Heuristic LP 

3 3 586 1794 604 10 0.73 0.48 393.79 
5 6 286 1836 346 10 2.34 0.28 45.08 
4 6 473 2934 521 10 1.22 0.86 146.02 
3 7 464 3332 506 10 1.34 0.77 147.74 
3 4 886 3592 910 10 0.86 1.47 674.78 
4 8 764 6240 828 10 1.12 2.33 2084.95 

 
Table 2. Results for large scale problems 
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