
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

1213

Using Intelligent Agents to Build E-Business Software

Adrien Coyette, Manuel Kolp, Stéphane Faulkner

Information Systems Research Unit, University of Louvain,
1 Place des Doyens, 1348 Louvain-la-Neuve, Belgium

{coyette, kolp, faulkner}@isys.ucl.ac.be

ABSTRACT

Agent architectures are gaining popularity for building open, distributed, and evolving software required by
e-commerce applications. Unfortunately, despite considerable work in software architecture during the last decade, few
research efforts have aimed at truly defining patterns and languages for agent architectural design. This paper proposes
a modern approach based on organizational structures and architectural description languages to define and specify
agent architectures notably in the case of e-commerce system design.

Keywords: Agent Systems, Architectural Description Language, Organizational Styles, E-commerce Application

1. INTRODUCTION

The meteoric rise of Internet and World-Wide-Web
technologies has created overnight new application
areas for enterprise software, including e-commerce
applications. These areas demand software that is robust,
can operate within a wide range of environments, and
can evolve over time to cope with changing
requirements. Moreover, such software has to be highly
customisable to meet the needs of a wide range of users
and sufficiently secure to protect personal data and other
assets on behalf of its stakeholders.

Not surprisingly, researchers are looking for new
software designs that cope with such requirements. One
promising source of ideas for designing such
e-commerce software is the area of agent architectures.
They appear to be more flexible, modular and robust
than traditional including object-oriented ones. They
tend to be open and dynamic in the sense they exist in a
changing organizational and operational environment
where new components can be added, modified or
removed at any time.

To cope with the ever-increasing complexity of the
design of software architecture, architectural design has
received through the last decade increasing attention as
an important field of software engineering. Practitioners
have come to realize that getting an architecture right is
a critical success factor for system life-cycle and have
recognized the value of making explicit architectural
descriptions and choices in the development of new
software.

To this end, a number of architectural description
languages (ADL) and architectural styles [4] have been
proposed for representing and analyzing architectural
designs. An architectural description language provides
a concrete syntax for specifying architectural
abstractions in a descriptive notation while an
architectural style constitutes an intellectually
manageable abstraction of system structure that

describes how system components interact and work
together.

Unfortunately, despite this considerable work [9], few
research efforts have aimed at truly defining styles and
description languages for agent architectural design. To
fill this gap, we have defined, in the SKwyRL project
(http://www.isys.ucl.ac.be/skwyrl/), architectural styles
for agent systems based on an organizational
perspective [2] and have proposed in [3] SKwyRL-ADL,
an agent architectural description language. This paper
continues and integrates this research: it focuses on an
agent perspective for designing and specifying
e-commerce software architecture based on
organizational styles and SKwyRL-ADL. The
structure-in-5 organizational style will be instantiated to
design the architecture of the system and the
specifications will be expressed in a formal way with
SKwyRL-ADL.The rest of the paper is organized as
follows. Section 2 introduces some perspectives of
SKwyRL insisting on the BDI model, our ADL and
organizational styles. Section 3 describes our agent
oriented approach on e-commerce system development,
including the design of the global architecture with
organizational styles, its formal specification with
SKwyRL-ADL and the corresponding implementation
on an agent-oriented platform. Finally, Section 4
concludes the research..

2. ADL AND STYLES IN SKWYRL

We have detailed in the SKwyRL project an agent ADL
called SKwyRL-ADL [3] that proposes a set of
abstractions that are fundamental to the description and
specification of agent architectures based on the BDI
(Belief-Desire-Intention) agent model. To help the
reader to understand our ADL specification in the rest of
the paper, we briefly present the main elements of
SKwyRL-ADL including the BDI agent model.
SKwyRL-ADL is composed of two sub-models which
operate at two different levels of abstraction: internal
and global. The internal model captures the states of

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1214

an agent and its potential behavior. The global model
describes the interaction among agents that compose the
agent architecture. We will also introduce organizational
styles through the description of one of them, the
structure-in-5, that will be used later on in the paper.

2.1 The BDI Agent Model

An agent defines a system entity, situated in some
environment that is capable of flexible autonomous
action in order to meet its design objective [11].

An agent can be useful as a stand-alone entity that
delegates particular tasks on behalf of a user. However,
in the overwhelming majority of cases, agents exist in
an environment that contains other agents. Such
environment is a agent system that can be defined as an
organization composed of autonomous and proactive
agents that interact with each other to achieve common
or private goals [6].

In order to reason about themselves and act in an
autonomous way, agents are usually built on rationale
models and reasoning strategies that have roots in
various disciplines including artificial intelligence,
cognitive science, psychology or philosophy. An
exhaustive evaluation of these models would be out of
the scope of this paper or even this research work. A
simple yet powerful and mature model coming from
cognitive science and philosophy that has received a
great deal of attention, notably in artificial intelligence,
is the Belief-Desire-Intention (BDI) model [1]. This
approach has been intensively used to study the design
rationale of agents and is proposed as a keystone model
in numerous agent-oriented development environments
such as JACK [5]. The main concepts of the BDI agent
model are in addition to the notion of agent itself we
have just explained:

- Beliefs that represent the informational state of a BDI
agent, that is, what it knows about itself and the world;
- Desires (or goals) that are its motivational state, that is,
what the agent is trying to achieve;
- Intentions that represent the deliberative state of the
agent, that is, which plans the agent has chosen for
possible execution.

2.2 Internal Model

Figure 1 illustrates the main entities and relationships of
the internal model of SKwyRL-ADL. The agent needs
knowledge about the environment in order to reach
decisions. Knowledge is contained in agents in the form
of one of many knowledge bases. A Knowledge base
consists of a set of beliefs that the agent has about the
environment and a set of goals that it pursues. A belief is
a finite set of objects, things with individual identities
and properties, that represents a view of the current
environment states of an agent. However, beliefs about
the current state of the environment are not always

enough to decide what to do. In other words, as well as
a current state description, the agent needs some sort of
goal information, which describes an environment state
that are (not) desirable.

Figure 1: Conceptual representation of the internal
model

The intentional behavior of an agent is represented by
their capabilities to react to events. An event is
generated either by an action that modifies beliefs or
adds new goals, or by services provided from another
agent. Note that these services are represented in the
global model because they involve interaction among
agents that compose the agent system.

An event may invoke (trigger) one or more plans; the
agent commits to execute one of them, that is, it
becomes intention. A plan defines the sequence of
action to be chosen by the agent to accomplish a task or
achieve a goal. An action can query or change the
beliefs, generate new events or submit new goals.

2.3 Global Model

Figure 2 conceptualizes the global model which
describes the interaction among agents that compose the
agent system. Configurations are the central concept of
architectural design, consisting of an interconnected set
of agents. The topology of a configuration is defined by
a set of bindings between provided and required
services.

An agent interacts with its environment through an
interface composed of sensors and effectors. An effector
provides to the environment a set of services. Then, a
sensor requires a set of services from the environment.
A service is an action involving an interaction among
agents.

The whole agent system is specified with an architecture
which contains a set of configurations. An architecture

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

1215

represents agents by one or more detailed, lower-level
configuration descriptions.

Figure 2: Conceptual Representation of the Global
Model

2.4 Agent Architectural Styles

A key aspect to conduct architectural design in
SKwyRL is the specification and use of organizational
styles [2, 6]. These are socially-based design alternative
inspired from models and concepts from organizational
theories that analyze the structure and design of
real-world human organizations.

For instance, the agent architecture we propose in
Figure 3 has been designed following the structure-in-5
organizational style detailed in [2]. In a few words, the
structure-in-5 style is a meta-structure that defines an
organizational architecture that as an aggregate of five
sub-structures, as described by Mintzberg [8]. It consists
of five typical strategic and logistic components found
in many organizations. At the base level one finds the
Operational Core where the basic tasks and operations --
the input, processing, output and direct support
procedures associated with running the system -- are
carried out. At the top lies the Apex composed of
strategic executive components. Below it, sit the
control/standardization, management components and
logistics: Coordination, Middle Agency and Support,
respectively.

3. AGENT ARCHITECURE FOR E-COMMERCE

SYSTEM

E-Media (http://www.isys.ucl.ac.be/skwyrl/emedia) is a
typical business-to-consumer application we have
developed using the architectural concepts explained in
Section 2. The application offers an e-commerce
architecture supporting the creation of information

sources that facilitate the on-line transaction of products,
services, and payments resulting in an effective and
efficient interaction among sellers, buyers and
intermediaries.

This section describes how we have applied the
structure-in-5 style to design the architecture of E-media
and used SKwyRL-ADL to formally specify each
architectural aspect (belief, goal, plan, action, interface,
configuration, service …) of the application. Based on
this architectural specification, we have implemented
the application using JACK, a JAVA agent-oriented
development environment.

3.1 E-Media Architecture

E-Media includes the following features:
- An on-line web interface allows customers to examine
the items in the E-Media catalogue, and place orders;
- Customers can search the on-line store by either
browsing the catalogue or querying the item database.
An online search engine allows customers to search title,
author/artist and description fields trough keywords or
full-text search;
- If an item is not available in the catalogue, the
customer has the option to order it;
- Internet communications are supported;
- On-line financial transactions including credit card and
anonymity are protected;
- All web information (e.g., product and customer
turnover, sales average, …) of strategic importance is
recorded for monthly or on-demand statistical analysis;
- Based of this statistical and strategic information, the
system permanently manages and adapts the stock,
pricing and promotions policy. For example, for each
product, the system can decide to increase or decrease
stocks or profit margins. It can also adapt the customer
on-line interface with new product promotions.

Figure 3 models the architecture of E-Media using the
i* model [12] following the structure-in-5
organizational style we have introduced in Section 2.

i* is a graph, where each node represents an actor (or
system component) and each link between two actors
indicates that one actor depends on the other for some
goal to be attained. A dependency describes an
“agreement” (called dependum) between two actors: the
depender and the dependee. The depender is the
depending actor, and the dependee, the actor who is
depended upon. The type of the dependency describes
the nature of the agreement. Goal dependencies
represent delegation of responsibility for fulfilling a
goal; softgoal dependencies are similar to goal
dependencies, but their fulfilment cannot be defined
precisely; task dependencies are used in situations
where the dependee is required. As show in Figure 3,
actors are represented as circles; dependums – goals,
softgoals, tasks and resources – are respectively
represented as ovals, clouds, hexagons and rectangles;

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1216

dependencies have the form depender → dependum →
dependee.

Figure3: The E-Media Architecture in Structure-in-5

The Store Front plays the role of the structure-in-5’s
Operational Core. It interacts with customers and
provides them with a usable front-end web application
for consulting, searching and shopping media items.

The Back Store constitutes the structure-in-5’s Support
component. It manages the product database and
communicates to the Store Front relevant product
information. It stores and backs up all web information
about customers, products and sales to be able to
produce statistical information (e.g., analyses, average
charts and turnover reports). Such kind of information is
computed either for a predefined product (when the
Coordinator asks it) or on a monthly basis for every
product. Based on this monthly statistical information, it
provides also the Decision Maker with strategic
information (e.g., sales increase or decrease,
performance charts, best sales, sales prevision, …).

The Billing Processor plays the role of the
structure-in-5’s Technostructure in handling customer
orders and bills. To this end, it provides the customer
with on-line shopping cart capabilities. It also ensures
the secure management of financial transactions for the
Decision Maker. Finally, it handles, under the
responsibility of the Coordinator component, stock
orders to avoid shortages or congestions.

As the structure-in-5’s Middle Agency, the Coordinator
assumes the central position of the architecture. It is
responsible to implements strategic decisions for the
Decision Maker (Strategic Apex). It supervises and
coordinates the activities of the Billing Processor
(initiating the stock and pricing policy), the Front Store
(adapting the front end interface with new promotions
and recommendations) and the Back Store

(parametrizing statistical computing) ensuring that the
system fulfills its mission in an effective way.

Finally, the Decision Maker assumes the Strategic Apex
role of the structure-in-5. It defines the Strategic
Behavior (e.g., sales and turnover, product visibility,
hits, …) of the system ensuring that objectives and
responsibilities delegated to the Billing Processor,
Coordinator and Back Store are consistent with respect
to their capabilities.

3.2 E-Media Formal Specification

The architecture described in Figure 3 gives an
organizational representation of the system-to-be
including relevant actors and their respective goals,
tasks and resource inter-dependencies. This model can
serve as a basis to understand and discuss the
assignment of system functionalities but it is not
adequate to provide a precise specification of the system
details. As introduced in Section 2, SKwyRL-ADL
provides a finite set of formal agent-oriented
constructors that allow to detail in a formal and
consistent way the software architecture as well as its
agent components and their behaviors.

Agent:{Back-Store
Interface
Effector[provide(strategic_info)]
Effector[provide(statistical_info)]
Effector[provide(product_info)]
Effector[provide(back-up)]
Sensor[require(stategic_behavior)]
KnowledgeBase:
Product_KB Statistical_KB
BS_System_KB BS_Customer_KB
Capabilities:
Statistical_CP Strategic_CP
Data_Management_CP
}

Figure 4: Agent Description of the Back-Store

Figure 4 shows a high-level formal description of the
Back-Store agent. Three aspects of this agent
component are of concern here: the interface
representing the interactions in which the agent will
participate, the knowledge base defining the agent
knowledge capacity and the capabilities defining agent
behaviors.
SkwyRL-ADL allows to work at different levels of
architectural abstractions (i.e., different views of the
system architecture) to encapsulate different
components of the system in independent hierarchical
descriptions. For instance, in Figure 4 the Back Store
agent has three knowledge bases (KB) and three
capabilities (CP), but the description level chosen here
does not specify the details of the beliefs composing the
KB or the plans and events composing each capability.

The rest of the section focuses on the Back Store agent
to give an example of a refinement specification with

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

1217

our ADL for each of the three aspects of the agent:
interface, knowledge bases and capabilities.

Interface. The agent interface consists of a number of
effectors and sensors for the agent. Each of them
represents an action in which the agent will participate.
Each effector provides a service that is available to other
agents, and each sensor requires a service provided by
another agent. The correspondence between a required
and a provided service defines an interaction. For
example, the Back Store provides the statistical_info
service that the Coordinator requires.

 Such interface definition points two aspects of an agent.
Firstly, it indicates the expectations the agent has about
the agents with which it interacts. Secondly, it reveals
that the interaction relationships are a central issue of
the architectural description. Such relationships are not
only part of the specification of the agent behavior but
reflect the potential patterns of communication that
characterize the ways the system reason about itself.

Service: {Ask(statistical_info)
sender: Coordinator
parameters: (tw: TimeWindows), (id: Id_product)
reply_with: to: Turnover ∨ sl: Sales
receiver: Back-Store
Effect:Add(Statistical_KB, Achieve (stat(“today”,“on_product”)
}

Figure 5: A Service Specification

The specification of a service is given in Figure 5. Each
provided or required service is detailed by specifying
the sender agent that initiates the service, the set of
receiver agents that interact with the sender, the
reply-with and content statements that define the
information about which the service expresses an
interaction and optionally a set of parameters to define
the information required to execute the service. Like the
parameters the reply-with information is represented
with a belief or a set of terms (e.g., function, constant or
variable).

Knowledge Bases. A knowledge base (KB) is specified
with a name, a body and a type. The name identifies the
KB whenever an agent wants to query or modify them
(add or remove a belief). The body represents a set of
beliefs in the manner of a relational database schema. It
describes the beliefs the agent may have in terms of
fields. When the agent acquires a new belief, values for
each of its fields are specified and the belief is added to
the appropriate KB as a new tuple. The KB type
describes the kind of formal knowledge used by the
agent. A Closed world assumes that the agent is
operating in a world where every tuple it can express is
included in a KB at all times as being true or false.
Inversely, in an open world KB, any tuple not included
as true or false is assumed to be unknown. Figure 6
gives the specification the Product_KB:

KnowledgeBase: {Product_KB
Kb_body:

product(Id_Prod,Title,Class,Description,Price)
purchase(Id_Card,Id_Prod,Date,Quantity,Pay_Means)
audio(Id_Prod,Artist(+),Compositor(+))
book(Id_Prod,ISBN,ISNN,Author(+),Publisher)
dvd(Id_Prod,Actor(+),Realizator(+))
…
kb-type: closed_world
 }

Figure 6: A Knowledge Base Specification

Capabilities formalize the behavioral elements of an
agent. They are composed of plans and events that
together define the agent’s abilities. They can also be
composed of sub-capabilities that can be combined to
provide complex behavior.

Capability: {Data_Management_CP
CP_body:
Plan Send_Product_Data
Plan Backup_Database
Plan Check_Identification
Plan I nterface_Custom_Id
endEvent update_interface
PostEvent backup
}

Figure 7: Capability Specification

Figure 7 shows the Data_Management capability of the
Back-Store agent. The body contains the plans the
capability can execute and the events it can post to be
handled by other plans or it can send to other agents.
For example, the Data_Management capability is
composed of four plans: Send_Product_Data is used to
send product information to the Store-Front,
Backup_Database backs up all information about
customers, products and sales in order to provide
statistical information, Interface_Custom_Id allows user
registration and Check_Identification checks the
customer login/password when an order is made.

A plan defines the sequence of actions and/or services
(i.e., actions that involve interaction with other agents)
the agent selects to accomplish a task or achieve a goal.
A plan consists of:
- an invocation condition detailing the circumstances, in
terms of beliefs or goals, that cause the plan to be
triggered;
- an optional context that defines the preconditions of
the plan, i.e., what must be believed by the agent for a
plan to be selected for execution;
- the plan body, that specifies either the sequence of
formulae that the agent needs to perform, a formula
being either an action or a service to be executed;
an end state that defines the post-conditions under
which the plan succeeds;
- and optionally a set of services or actions that specify
what happens when a plan fails or succeeds.

Configuration To describe the complete topology of the
system architecture, the agents of an architectural
description are combined into a SkwyRL configuration.

Instances of each agent or service that appear in the
configuration must be identified with an explicit and

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1218

unique name. The configuration also describes the
collaborations (i.e., which agent participates in which
interaction) through a one-to-many mapping between
provided and required service instances.

3.3 E-Media Implementation

Based on the structure-in-5 architecture described in
Section 3.1 and the formal SKwyRL-ADL architectural
specification overviewed in Section 3.2, the E-Media
application has been implemented with JACK (JACK),
a BDI agent-oriented development environment for
JAVA. We briefly describe the E-Media implementation
to illustrate the role of the agents and their interactions.

Figure 8: E-media Main Interface

When an on-line customer gets connected to E-media,
an instance of the Front-Store is created to display the
interface depicted in Figure 8. It allows the new
coming user to register (1). The Back-Store handles the
information provided by the user and checks its validity
(2). If the access is granted, the user can purchase
products on E-Media by adding catalogue items to the
shopping cart (4) managed by the Billing-Processor. At
any time the user can use the navigation-bar (3) to
switch from one section of the website to another.
Promotions (5) and best sales (6) are part of the strategic
behaviour objective. The promotions policy is initiated
by the Decision-Maker based on the strategic
information provided by the Back-Store. The
Coordinator chooses the best promotions and
consequently adapts the Store Front layout. The
Coordinator acts similarly for the best sales: the
Back-Store computes the five best sellers and the
Coordinator accordingly updates the Store-Front.

6. CONCLUSION

Nowadays, software engineering for new enterprise
application domains such as e-Business is forced to
build up open systems able to cope with distributed,
heterogeneous, and dynamic information issues. Most of
these software systems exist in a changing
organizational and operational environment where new
components can be added, modified or removed at any

time. For these reasons and more, agent architectures
are gaining popularity in that they do allow dynamic
and evolving structures which can change at run-time.

Architectural design has received considerable attention
for the past decade which has resulted in a collection of
well-understood architectural styles and formal
architectural description languages. Unfortunately, this
work has focuses on object-oriented rather than
agent-oriented systems. This paper has described an
approach based on organizational styles and an agent
architectural description language we have defined to
design agent architectures in the context of e-commerce
system engineering. The paper has proposed a
validation of the framework: it has been applied to
develop E-Media, an e-commerce platform
implemented on the JACK agent environment.

REFERENCES

[1] Bratman, M . E., Intention, Plans and Practical
Reason. Harvard University Press, 1987.
[2] Do, T. T., Faulkner, S. and Kolp, M., organizational
Multi-Agent Architectures for Information Systems. in
Proc. of the 5th Int. Conf. on Enterprise Information
Systems (ICEIS 2003), Angers, France, April 2003.
[3] Faulkner, S. and Kolp, M., Towards an Agent
Architectural Description Language for Information
Systems. Proc. of the 5th Int. Conf. on Enterprise
Information Systems (ICEIS 03), Angers, France, April
2003.
[4] Garlan, D., Allen, R. and Ockerbloom, J., Exploiting
Style in Architectural Design Environments. In Proc. of
SIGSOFT’94: Foundations of Software Engineering,
New Orleans, USA, Dec. 1994.
[5] http://www.agent-software.com/.
[6] Kolp, M., Giorgini, P. and Mylopoulos, J., An
Orga-nizational Perspective on Multi-agent
Architectures. In Proc. of the 8th Int. Workshop on
Agent Theories, architectures, and languages, ATAL’01,
Seattle, USA, Aug. 2001.
[7] Louis, R., 1999. Software agents activities. In
ICEIS’99, 1st International Conference on Enterprise
Information Systems. ICEIS Press.
[8] Mintzberg, H., Structure in fives: designing effective
organizations. Prentice-Hall, 1992.
[9] Shaw, M. and Garlan, D., Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall,
1996.
[10] Smith, J., 1998. The book, The publishing
company. London, 2nd edition.
[11] Wooldridge, M. and Jennings, N.R., editors.
Special Issue on Intelligent Agents and Multi-Agent
Systems. Applied Artificial Intelligence Journal. Vol.
9(4), 1996.
[12] Yu, E., Modeling Strategic Relationships for
Process Reengineering, Ph.D. thesis, Department of
Computer Science, University of Toronto, Canada,
1995.

