
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 117

Hierarchical Structuring of a Workflow Model in Petri-Net

Xinlei Zhao, Yongsun Choi

Dept. of Systems Management & Engineering, Inje University, Kimhae, Korea
xinleizhao@yahoo.com, yschoi@inje.ac.kr

ABSTRACT

In this paper, we introduce the way of deriving hierarchical structure of a workflow model represented in classical Petri-
net, even for the cases with cycles, which allows handling a workflow model efficiently. More specifically, our method
identifies any block structures as candidates for the subprocesses and represents them as a single block node in the
upper layer of the hierarchical model. The proposed method can make workflow analysis and design more accurate and
efficient and further lead to a better design on a collaborate environment.

Keywords: Workflow Model, Hierarchical Structuring, Process Abstraction, Hierarchical Petri-Net

1. INTRODUCTION

Recently, workflow management technology has shown
to be one of the driving tools in accelerating process-
oriented applications ([8], [11], [14]). There are typically
two stages of workflow management, workflow
specification and workflow execution. The former
defines a workflow model, and the latter generates
workflow instances guided by the workflow model [15].
The objective of workflow modeling is to provide high-
level specification of processes that are independent of
the implementation intricacies of the target workflow
management system [16]. The recent surges of e-
business process automation efforts in the corporations
worldwide places workflow analysis and design as a
fundamental task of more importance and asks for a
model capable of easy interpretation and various
analyses with efficiency [4].

Petri-nets, a directed bipartite graph with two node types
called places and transitions, have been utilized as an
effective methodology in system modeling ([6], [13]).
The Petri-net models provide clear graphical
representation and profound expressiveness for modeling
concurrent, qualitative and quantitative properties.
Moreover, the availability of various analysis utilities
with Petri-nets provides a means to verify and validate a
system, thus has made Petri-nets widely applied for
analyzing systems in many areas, including workflow
models ([3], [4], [7]). However, introducing the states of
the system in the model, called places, the process model
represented in classical Petri-nets almost doubles the
complexity of representation, in number of nodes and
arcs, than the activity-based direct graph model
representation. This makes it hard to interpret the
business processes represented in Petri-nets for the
human designers and rare to be employed by commercial
workflow management systems.

Hierarchical Petri-nets, as a type of high-level Petri-nets,
provide a mean to model complex system in a more
manageable way. When to model complex processes, a
classical Petri-net is structured hierarchically by

introducing subprocesses, using either a top-down or a
bottom-up approach. This divide-and-conquer strategy of
dividing a complex process into smaller subprocesses
allows overcoming the complexity for further analysis.
Furthermore, the identification of subprocesses provides
the way of reusing previously defined processes and
often makes it possible to model a complex process more
quickly ([1], [2]). Although hierarchical decomposition
of a complex workflow process is a useful step in
workflow analysis and design, until now there has been
no reported work of its automated support in the
literature. When the process model is complex, it is quite
perplexing for a human designer to recognize
substructures of potential subprocesses [5].

In this paper, we introduce the way of deriving
hierarchical structure of a workflow model represented in
classical Petri-nets, even for the cases with cycles, which
allows handling workflow model efficiently. More
specifically, our method identifies any block structures as
candidates for the subprocesses and represents them as a
single block node in the upper layer of the hierarchical
model. In case of a model with cycles, our method
partitions the given model into several acyclic subsets
according to feedback structures, and utilizes the
resulting partitioned structures when to compose a block.
This paper is organized as follows. In section 2, we
present the preliminary concepts such as a workflow-net
and its hierarchical extension. Section 3 describes the
steps of hierarchical structuring for the workflow models
represented in classical Petri-nets, with an illustrative
example. Section 4 concludes the paper.

2. A WORKFLOW-NET AND ITS
HIERARCHICAL EXTENSION

2.1 Workflow-nets

Petri-nets, represented by a directed bipartite graph in
which nodes are either places or transitions, are widely
studied and successfully applied in many discrete-event
dynamic systems ([6], [13]). Places, represented by
circles, describe states or conditions of the system and

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

118

transitions, represented in rectangles, describe the events
or transactions. The relationships between them are
represented by a set of arcs in either direction.

The strong mathematical foundation of Petri-nets and the
availability of a wide range of supporting tools have
made them popular including workflow domain ([3], [4],
[7]). Petri-net-based workflow models represent business
logics by a formal but also graphical language. Workflow
procedures are specified using a technique with formal
semantics of the classical Petri-net and several
extensions (color, time, or hierarchy). Availability of
abundant analysis techniques [12] is another driving
force for the Petri-net-based workflow models. In
general, these methodologies can be used to prove
properties, like safety, invariance, deadlock, etc., and to
calculate performance measures, like response times,
waiting times, occupation rates, etc.

A workflow-net is a Petri-net-based representation of a
workflow process with some syntactical requirements [2].
A workflow process defined in terms of a Petri-net has a
single input place start and a single output place end.
And each transition or place should lie on a directed path
from start to end. In other words, there should be no
“loose” nodes. Thanks to this requirement, each node can
be reached from the place start and the place end is
always reachable from each node, by following a number
of arcs. Of all workflow perspectives, e.g., control-flow,
data, organization, task, and operation, the control-flow
perspective is the most prominent one because it defines
the backbone of the workflow on which other
perspectives can be specified [4]. Workflow-nets focused
on control-flow perspective in modeling a workflow
process definition are utilized in this paper.

2.2 Hierarchical workflow-nets

Although the Petri-net has many features to model
concurrent, qualitative and quantitative properties, the
strict representation of a complex business process is
hard to read and understand for the human designers.
When facing more complicated situations, the classical
Petri-nets become too large and inaccessible, or it is not
possible to model a particular activity. The high-level
Petri-net, extended with color, time, or hierarchy, etc.,
helps for more close representation of the problem
situation, specific with the perspective considered. The
high-level Petri-net, inherits all the advantages of the
classical Petri-net, such as the graphical and precise
nature, the firm mathematical foundation, and abundance
of analysis methods [1].

The workflow-nets encountered in practice have many
tasks with very complex interaction structures. For the
designer of such a workflow the complexity is
overwhelming and communication with end-users using
one huge diagram is difficult [5]. Hierarchical Petri-net,
as a type of high-level Petri-net can help to model
complex situations in more structured and accessible way

[1]. A complex workflow can be decomposed into
smaller subflows until the desired level of detail is
reached. In addition, this mechanism can be utilized for
the reuse of existing workflows [5]. Although
hierarchical decomposition of a complex workflow
process is a useful step in workflow analysis and design,
until now there has been no reported work of its
automated support in the literature. Next, we explain our
approach of identifying and abstracting the blocks of the
workflow model as potential subprocesses to make the
process more simplified and manageable.

3. HIERARCHICAL STRUCTURING OF A
WORKFLOW-NET

Hierarchical structuring of a workflow-net by abstraction
is used to identify the potential sub processes and to
make the original process more manageable. Our
workflow abstraction method utilizes the concept of
inline blocks. An inline block is a subset of nodes and
arcs among those nodes that satisfies the blocked
transition property [15]. According to the Workflow
Management Coalition, the blocked transition property
states that any inward transition to the inline block can
only occur to the start node of the block and that any
outward transition from the inline block can only occur
at the end node of the block. An inline block is reducible
to a block node or may be modeled as a sub-process of
the original process definition. This helps in managing a
large-scale model, including verification of structural
conflicts [5], being represented as a hierarchy of simple
smaller models. Identifying inline blocks manually from
a complex workflow [5] is a difficult task even for an
experienced process designer.

3.1 Steps of hierarchical structuring

Fig. 1 shows the block diagram of the suggested method
for the hierarchical structuring of a workflow model
represented in Petri-net. As shown in Fig. 1, our method
is comprised of three main steps: 1) Partition a cyclic
workflow-net into a set of acyclic substructures; 2)
Compose next available candidate blocks; 3) Abstract
any block satisfying blocked transition property into a
block node.

More candidate
blocks ?

Partition into acyclic substructures

Compose next candidate block CB (σ, κ)

Abstract block CB (σ, κ)

EndN

Y

Y

Is CB (σ, κ)
an inline block?

N

Fig.1. Illustration of the algorithm

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

119

Partitioning a cyclic workflow model into acyclic
substructures

Step 1 identifies feedback structures and partitions the
given cyclic model into a set of acyclic substructures
iteratively, even for the models of nested feedback
structures. The rank of each node, utilized in Step 2 when
to select the next candidate block, is computed with
“back edges” [10] temporarily removed. According to
the order of feedback, nodes are classified into the so-
called nth-order Feedback Nodes, denoted by FNn. The
n-th iteration of Step 1 identifies FNn, by classifying the
set of nodes N. The detailed explanation of Step 1 with
illustrative examples is given in [9], with a directed
graph representation.

Candidates of inline blocks with cycles

Step 2 first configures potential inline blocks,
substructures of the given model, with one of the Split
nodes (except Feedback Splits) or Feedback Joins as the
block start node, called the source, and one of the Join
nodes (except Feedback Joins) or Feedback Splits as the
block end node, called the sink [9]. Those potential inline
blocks are referred to as candidate blocks because they
may or may not satisfy the blocked transition property.
This initial candidate block, composed with split and join
nodes as the border nodes, can be easily extended
without further verification effort by adding sequential
nodes at the borders. This way of composing candidate
blocks can reduce computational cost significantly by
focusing on the core candidate blocks.

A candidate block, composed with a node σ as source
and another node κ as sink, will be denoted by CB (σ, κ).
For convenience, the set of nodes that spans the
candidate block CB (σ, κ) will be also denoted as CB (σ,
κ), without confusion. The algorithm starts with the
simplest candidate block and extends to larger ones,
iteratively. More specifically, the algorithm starts with
CB (σ, κ), with σ as one of the candidate sources of
maximum rank and κ as one of the candidate sinks,
reachable from σ, of minimum rank. At next iteration,
new candidate block is selected by fetching new sink κ′
of the next higher rank with the same source σ of the
current candidate block; when all candidate blocks with
σ as source are evaluated or excluded, The algorithm
fetches new source σ′ of the next lower rank from the
stack of candidate sources and proceeds forward.

Blocked Transition Property for Cyclic Workflows

Step 3 checks the blocked transition property [15], i.e.,
no disallowed inward and outward arcs should exist for
the newly composed candidate block. If the candidate
block CB (σ, κ) satisfies the blocked transition property,
it is abstracted into a new block node, otherwise the
proposed method fetches next available candidate block.

In case violations of the blocked transition property
happen only at the source or the sink, we can compose an
inline block by splitting the source or the sink. Fig. 2
illustrates an example of composing an inline block with
CB (σ", κ") by splitting both the source σ and the sink κ
of CB (σ, κ). Note that if only one of these two
violations occur, we can compose an inline block with
CB (σ", κ) by splitting the source σ, CB (σ, κ") by
splitting the sink κ. The arc from node A or the arc to
node B, where A, B ∉ CB (σ", κ"), does not violate the
blocked transition property for the resulting inline block
of CB (σ", κ"). The newly added nodes σ" and κ" in Fig.
2 are null transition of no tasks to perform. The null state
nodes σ' and κ' are added to meet the requirements of the
Petri-net model, that is nodes should be connected with
others of distinct types. Note that it is not necessary the
source σ and sink κ are of same node type and is worth
for splitting only at the source or at the sink.

κ

σ

BX

X
A κ"

σ"

σ

B

κ

A

σ'

κ'

, : null nodes

Fig. 2. Composing an inline block by splitting the source
or the sink

Types of block structures

According to the node type of the source or the sink,
each block structure can be classified into one of the four
types that can be reviewed as follows from the Petri-net
model perspective:

Transition-to-Transition block (T-T block) or Place-to-
Place block (P-P block): The abstracted block node of a
subnet, either type of a transition or a state, is connected
with distinct type of nodes, and the resulting abstracted
model meets the requirement of Petri-net representation.
The block structure of any of these types can be
represented as a separate subprocess, making the
workflow model simpler. When a particular block
structure, represented as a subprocess recurs several
times in distinct workflow processes, the reuse of this
subprocess often makes it possible to model a complex
process more quickly. CB (σ", κ") in Fig. 2 is a T-T block.

Transition-to-Place block (T-P block) and Place-to-
Transition block (P-T block): These types of block
structures will make it ambiguous to assess the types of
the abstracted block nodes. Moreover, whatever node
type is assessed for the abstracted node, the resulting
abstracted model, with the abstracted node connected
with a node of same type, will not meet the requirements

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

120

of the Petri-net representation. To handle these
mismatching source-sink block structures, we basically
extend these structures by adding a sequential node prior
to the source or after the sink. When there exists no such
sequential node, our method inserts a pair of new null
nodes either before or after these structures and then
extends the structure. Our method gives priority to
compose the extended block into a T-T block, when to
insert new pair of nodes, if necessary, and to select a
sequential node to add.

3.2 An illustrative example

Fig. 3(a) shows an example workflow-net model, of 16
transitions and 17 places, for a process of organizing a

party modified from [2]. Figure 3(b) shows the
normalized model with ranks of nodes indicated to the
left. Figure 3(b) also shows 6 substructures, indicated by
dotted boxes, composing each corresponding block
satisfying blocked transition property. Note that two
pairs of nodes (17, C18) and (19, C20) are inserted to
split nodes C6 and 15 and to compose the block
structures of CB (C6, C7) and CB (3, 15), respectively.
Another pair of nodes (18, C19) is inserted to make the
mismatching block of CB (2, C15) into a T-T block of
CB (2, 18) extended by adding node 18. Note also that
another mismatching block of CB (C18, 6) is extended
into a T-T block of CB (4, 6) by adding an existing node
4 before CB (C18, 6).

3

C3

C6

2

C4

C5 10

C10

C11

11

12

C12 13

5

C77

C14

14

6

C13

9

C15

C8 8 C9

15

C16 16 C17

C1

1

C2

4

•

end

C2

1

3

C3

4

C1

2

C4 C5

10

C10 C11

11 12

C12

13

C14

14 6

C13

9

C15

C18

8

C9

15

C16

16

C17

•

17

C8

18

C19

C20

19

end

0

1

3

2

5

6

7

8

9

10

11

12

13

14

15

16

17

18

4

C6

5

C7

7

C2

1

C1

C19 C20

19

• 3

C3

8

C9

15

C16

16

C17

C8

end

2/18 3/151/19
4/6

(a) (b) (c)

Fig. 3 (a) The original workflow-net model modified from [2], (b) the normalized model with blocks indicated,
and (c) Part of top 3 layers of the resulting hierarchical model of total 5 layers

4. CONCLUDING REMARKS

The business processes tend to be more complicated and
have more functions according to the needs of the
internal and external request. Thus the resulting process
models with many transactions and activities are hard to
manage. Moreover, enterprises try to make their business
processes more extensible to inter-organizational
workflow models for the cross-organizational process,
requiring several distinct process design teams should
work cooperatively.

Though hierarchical decomposition of a business process
can help to manage complex situations in more
structured and accessible way [1], until now there has
been no reported work of its automated support in the
literature. In this paper, we introduced the way of
hierarchical structuring of a workflow model by
detecting and abstracting the block structures as potential

subprocesses to make the given large-scale workflow
model more simplified and manageable. Our method is
comprised of three main steps: 1) Partition a cyclic
workflow-net into a set of acyclic substructures; 2)
Compose next available candidate blocks; 3) Abstract
any block structures, as candidates for the subprocesses,
into a block node in the upper layer of the hierarchical
model. Automated support of hierarchical structuring of
large-scale enterprise processes will make them more
manageable and further lead to a better process design on
a collaborate environment.

REFERENCES

[1] Aalst, W.M.P. van der, K.M. van Hee, and G.J.
Houben, “Modelling workflow management systems with
high-level Petri nets.” In G. De Michelis, C. Ellis, and G.
Memmi, editors, Proceedings of the second Workshop on
Computer-Supported Cooperative Work, Petri nets and related
formalisms, pp. 31-50, 1994.

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

121

[2] Aalst, W.M.P. van der, K. M. van Hee, Workflow
Management: Models, Methods, and Systems, MIT Press, 2000.
[3] Aalst, W. M. P. van der, K. van Hee, “Business
Process Redesign: A Petri-net-based approach”, Computers in
Industry, 29(1-2), pp. 15-26, 1996.
[4] Aalst, W. M. P. van der, “The Application of Petri
Nets to Workflow Management”, The Journal of Circuits,
Systems and Computers, vol. 8, no. 1, pp. 21-66, 1998.
[5] Aalst, W. M. P. van der, “Workflow Verification:
Finding Control-Flow Errors using Petri-net-based Techniques”,
In W.M.P. van der Aalst, J. Desel, and A. Oberweis, Editors,
Business Process Management: Models, Techniques, and
Empirical Studies, volume 1806 of Lecture Notes in Computer
Science, pp. 161-183, Springer-Verlag, Berlin, 2000.
[6] Aalst, W.M.P. van der. “Putting Petri nets to work in
industry” Computers in Industry, vol. 25, no. 1, pp. 45-54, 1994.
[7] Adam, N. R., V. Atluri, and W. Huang. “Modeling
and Analysis of Workflows using Petri Nets,” Journal of
Intelligent Information Systems, vol. 10, pp. 131-158, 1998.
[8] Basu, A. and A. Kumar, “Research commentary:
Workflow management issues in e-Business,” Information
Systems Research, vol. 13, no. 1, pp. 1-14, 2002.
[9] Choi, Y. and J. L. Zhao, “Partitioning into acyclic

flows and 2-phased verification of structural conflicts for a
cyclic workflow graph”, The Fourth International Conference
on Electronic Business (ICEB2004), Dec. 2004, forthcoming.
[10] Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C.
Stein, Introduction to Algorithms (2nd Ed.), MIT Press, 2001.
[11] Delphi Group, BPM2002: Market Milestone Report,
available at http://www.delphigroup.com/.
[12] Georgakopoulos, D., M. Hornick, and A. Sheth, “An
overview of workflow management: from process modeling to
workflow automation infrastructure”, Distributed and Parallel
Databases, vol. 3, pp.119-153, 1995.
[13] Murata, T., “Petri nets: Properties, analysis, and
applications”, Proceedings of the IEEE, vol. 77, no. 4, pp. 541-
580, 1989.
[14] Sheth, A. P., W. M. P. van der Aalst, and I. B.
Arpinar, “Processes driving the networked economy,” IEEE
Concurrency, vol. 7, no. 3, pp. 18–31, 1999.
[15] Workflow Management Coalition, Glossary.
Document Number WfMC-TC-1011, 1999.
[16] Workflow Management Coalition, Interface 1:
Process Definition Interchange Process Model. Document
Number WfMC TC-1016-P, 1999.

