
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 696

Refinement for Ontology Evolution in Virtual Enterprises

Li Li, Baolin Wu, Yun Yang

CICEC Centre for Internet Computing and E-Commerce Faculty of ICT, Swinburne University of Technology
PO Box 218, Hawthorn, Melbourne, Australia 3122

{lli,bwu, yyang}@it.swin.edu.au

ABSTRACT

Virtual enterprise is based on the premise that work should be done where it can be done most optimally. In virtual en-
terprises, geographical boundaries merge seamlessly. It enables organisations to act in a way of flexibility and ability to
adapt to rapid changes on the fly. However, different parties in a virtual enterprise must understand each other before
they go further details in business. Ontologies are such kinds of ideal baselines to assist parties to communicate. One of
the essential research issues with ontology is how to deal with changes during their evolving cycle. Therefore, ontology
refinement is a crucial component in ontology evolution. This paper presents a taxonomy structure focusing on the is-a
relations. In particular, the concept of closeness measurement is introduced based on the “distance” estimation. An ex-
tended cluster analysis process is provided. According to the algorithm presented, a new concept is generated according
to its attributes. Additionally, the refinement mechanisms for primitive operations are proposed. Unlike some other on-
tology refinement mechanisms which leave ontology consistency checking to human users after modification, our
method emphasises the importance of consistency checking by applying description logics which is demonstrated based
on the proposed ontology.

Keywords: ontology evolution, virtual enterprises, clustering, description logic, consistency checking

1. INTRODUCTION

An ontology can be defined as an explicit specification
of conceptualisation [6]. Currently, the use of ontology
for different purposes such as Web applications, Web
semantics, information systems, are intensively ad-
dressed. The ontology is important because it is the
foundation for different organisations to understand
each other within or across enterprises. Feasible
ontologies in virtual enterprises (VEs) are especially
important because of VE’s characteristics: VEs only ex-
ist for a short life span as a temporary network of geo-
graphically distributed partners that cooperatively work
together to share skills, costs, profits, risks, and markets,
and, at the same time, decrease the investment [3]. VEs
are not rigid organisational structures within rigid
frameworks, but rather, heterogeneous ensembles, con-
tinuously evolving over time [13]. For this reason, a
complete ontology is essential for VE formation be-
cause of its pressing time requirement and heterogene-
ity. However, there indeed exist cases when some con-
cepts/attributes and their relations are out of date or
cannot be accessed through the current ontology. Ac-
cording to Stojanovic [14], there are seven different re-
quirements demanding ontology evolution. In addition,
a six-phase evolution process is addressed. Other re-
searchers [12,14] also note that ontology development is
a dynamic process starting with an initial rough ontol-
ogy, which is revised, refined and filled with details on
an ongoing basis. That is to say, ontology refinement is
important and needs more efforts throughout its entire
lifecycle. In VEs where different parties might work on
an ontology collaboratively, dynamically refining the
ontology is likely to be more important than that in any
other places.

Intelligent software agents (agents hereafter) are a suit-
able means of representing the partners of a VE [5].
Agents act on behalf of the enterprises or organisations
that collaborate among themselves to achieve a specific
goal under assumptions that they are goal-oriented,
commitment-based and able to share skills, cost, profits,
risks and markets [12]. We assume agents who are
likely to form a VE have similar but slightly differing
ontologies rather than completely different ones. This is
reasonable in the real world for different partners having
something in common within the domain.

Some work has been performed on tackling ontology re-
finement. Noy’s work [10] talks about that both merg-
ing and alignment are two processes which are usually
used to handle the ontology refinement. These two
processes are illustrated in PROMPT [11], a semi-
automatic approach to ontology merging and alignment
where users’ intervention is required. In his book [8],
Maedche mentions an essential part of ontology engi-
neering ontology learning. The development of the
taxonomic backbone of the ontology is also involved.
The clustering analysis mainly discussed in natural lan-
guage processing previously, has been highlighted from
learning the taxonomic relation perspective.

Generally speaking, existing refining proposals fall into
two categories. One is to investigate ontology dynamic
changes and the corresponding management from the
knowledge engineering perspective [1,4,8,14]. The
other is from the context of plan execution [9]. How-
ever, in light of their proposed approaches, a new term’s
relationships with existing concepts are specified/semi-
specified by human users. By doing so they avoid indi-
cating how they get to know the relations between con-

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 697

cepts. That is to say that they fail to address how they
get to know the relations between new terms and the ex-
isting ones and whether the ontology is still consistent
after some modifications.

To comply with the requirements, our main task will be
on adjusting the proposed ontology structure to any
changes of concepts and their relations while at the
same time processing consistency checking with the
source ontology. We use a statistics-based approach, es-
pecially the cluster analysis method first to obtain a cor-
responding classification of the terms (in the is-a con-
cept hierarchy). Then we use description logics (DLs)
[2,7] to check if the newly added concepts are consistent
with the original ontology structure by considering their
satisfiability and subsumption. The novel contribution
of this paper is to provide a method that operates in a re-
silient manner in ontology refinement, and at meantime,
consistency checking complying with the ontology evo-
lution life cycle to guarantee that any application has a
sound knowledge of the world.

We do not distinguish terms between parties, partners,
participants and agents in this paper only if they would
convoy much more meaning in certain circumstance.

The rest of this paper is organised as follows. The next
section first presents a taxonomy structure and then ad-
dresses the mapping between concept relations and dis-
tances. Section 3 proposes refinement mechanisms for
the add and delete primitive operations. Section 4 dis-
cusses consistency checking of an ontology by using
DLs. Section 5 illustrates our approach with an exam-
ple. Finally, section 6 concludes our work.

2. CLUSTER ANALYSIS

Term cluster analysis [15] actually encompasses a
number of different classification algorithms. Two
things are worth noting here. One general question fac-
ing cluster analysis in many areas is how to organise
observed data into meaningful structures— taxonomies.
Another is a suitable algorithm for a specific question.
In this paper, concepts are organised as the higher the
level of concept aggregation the more abstract these
concepts are in the respective class. We borrow term
“distance” to show close/loose relations in the paper. In
addition, we use the term “new cluster” to notate a new
generated concept if needed in a dendrogram. It will be
discussed in more detail in section 3.

2.1 Taxonomy Structure

A concept definition, along with its relations and others
(if they exist), is more likely to be described in a taxon-
omy (the “is-a” hierarchy) structure. The most central
relations are the is-a relation (concept— concept) and
property-of relation (concept— attribute). Like in Figure
1, nodes in squares with capital letters such as A, B, C,
D, E, and F are abstract concepts whereas other nodes

notated in circle with lowercases are concrete ones. The
difference between an abstract concept and a concrete
one lies in that the abstract one subsumes sub concepts.
In this paper, concrete concepts are specifies with primi-
tive or common knowledge in terms of attributes and
properties. For instance, in a general “transport” ontol-
ogy which describes different transports such as “ship”,
“airplane”, “bus”, and “train” etc. and their relation-
ships, concepts like “ship”, “airplane”, “bus”, and
“train” are abstract concepts, while “mph”, and “capac-
ity” are concrete concepts to define the attributes of a
specific transport. Clearly, concept B subsumes both E
and F, whereas B is subsumed by another concept A.
And lowercase f is a property-of concept A. Obviously,
the higher the concept is, the more abstract it is. Ontol-
ogy structure in this paper is described in the “is-a” hi-
erarchical structure. And we will refer to Figure 1 again
in subsequent sections. Understanding how a dendro-
gram is constructed, and how it should be interpreted, is
helpful to understand ontology refinement by using
clustering analysis. The next subsection will discuss
Figure 1 in-depth from the cluster analysis perspective.

Fig. 1. Taxonomy structure of concepts

2.2 Mapping Concept Relations and Distances

Every concept, no matter it is a concrete or an abstract
concept, has a set of attributes with different levels of
granularity. Generally speaking, a concept can be ex-
pressed by a set of triples of (attribute, value, weight),
namely Aatt=<(a1, v1, w1), (a2, v2, w2),… ,(am, vm, wm)>,
where aj is an attribute and vj is the corresponding value.
Here wj (j∈ [1, n]) is represented by a real number in
range [0,1]) which is an estimation standing for to what
extent an attribute getting a specific value (1 means
matching perfectly, while others mean they can be ap-
proximately equal to those values). An instance such as
(shape, circle, 0.8) means that a concept has attribute
“shape” with value “circle”, but not a 100 percent circle,
the closeness estimation is only 0.8 instead of 1.

In order to reduce redundancy, a value matrix (VM in
short), a corresponding attribute vector (AV), and its
corresponding weight matrix (WM, in which 0 means
corresponding attribute is N/A) are introduced below. It
is easy to get a triple mentioned above such as (shape,
circle, 0.8).



















size

colour
shape

L



















biggreenAN

samllgreensquare
ANredcircle

L
LLLL

L
L

/

/



















8.09.00

1.06.01
018.0

L
LLLL

L
L

(VM) (AV) (WM)

It is clear that the concept similarity, which is based on

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 698

relevant matrixes and closeness measurement, deter-
mines the relations between the concepts. In terms of
the closeness measurement, “distances” between the at-
tributes will be calculated. Obviously, the smaller “dis-
tance” means much more similar than that of greater
“distance”.

In order to calculate the distance, similarity matrixes
(also symmetric matrixes, notated as SM1, SM2, SMj, … ,
SMm for simplicity), where SMj corresponds to the jth at-
tribute in the AV vector and their different values, are
provided. These matrixes show how close these values
are (similarity closeness ∈[0, 1], in which 1 means per-
fectly matching, 0 means never matching, other value
∈(0, 1) means approximate matching).

Let us recall all of them before we start to discuss our
approaches. In order for agents to automatically refine
their individual ontologies, firstly, a value matrix (VM),
a corresponding attribute vector (AV), and its corre-
sponding weight matrix (WM) must provide. Moreover
we suppose that similarity matrixes (SM1, SM2, SMj, … ,
SMm) are available for the proposed ontology and their
attributes. In addition, we always treat ontologies are
consistent initially. Without this our consistency check-
ing will make no sense.

3. REFINEMENT MECHANISMS

As indicated earlier, ontology evolves overtime in the
real world. How to refine ontology on the fly needs to
be handled properly. In this section, we consider two
primitive operations, i.e. add and delete as the refine-
ment mechanisms based on the ontology structure and
cluster analysis discussed earlier in this paper.

3.1 Add Operation

When we consider the add operation, generally there are
two cases: (1) a new concept is subsumed by another
concept; (2) a new cluster (concept) needs to be created
in order to subsume a new concept. It is also possible
that a new cluster may generate another bigger new
cluster afterwards. Let us consider new concept X (only
considering an abstract concept here) in Figure 2. In one
case (on the left), X is subsumed by concept B, while in
another case (on the right) shows that a new cluster Y
(being subsumed by concept A), is generated which sub-
sumes both B and X.

Fig. 2. Two cases of adding operation

For the reason that the number of the attributes might
vary from concept to concept, for simplicity, the biggest
number will determine the cardinality of the VA. In this

case, there must be some empty elements in VM, here
“N/A” is used to notate no such a property in VM. Figure
3 is the flow chart to add a new concept through top-
down in the hierarchy.

Fig. 3. Flow chart of adding a new concept

First of all, we assume that new concept X has the same
attribute vector (AV) as others do. Of course, some
properties are “N/A” under certain circumstance, so does
the weight matrix (WM) with corresponding 0’s value.
Additionally, X’s weight vector wX and value vec-

tor vX are also provided. The details are as follows.

Step 1: Function sort_WM
It mainly deals with sorting weight matrix (WM) by re-
ferring to X’s 1’s distribution by referring to its weight
vector wX (each Xjw ∈ [0, 1]). The sum-

mary∑
=

⋅
m

j
Xjij ww

1

, where i∈[1,n], j∈[1, m], ∈ijw [0,1],

corresponding to the element in WM, ∈Xjw [0,1], cor-

responding to the element in wX is filtered by a thresh-

old (1δ) which is given apriori.
(1) The values that are less than the threshold are
ignored.
(2) If all values are less than the given value, the
process leads to the END of the adding process. That is
to say, the new concept X is irrelevant to the existing
concept taxonomy structure.
(3) Otherwise all selected vectors form a new
weight matrix New_WM and a new value matrix
New_VM respectively (only related concepts are left af-
ter this step).

Step 2: Function calculate_closeness
As mentioned before (Section 2.2), SMj (j∈[1,m]) as a
similarity matrix (it is symmetric) provides similarity
measurements of different values upon a specific attrib-
ute. For example, an attribute “shape” has a matrix
(SMj) to estimate to what extent the shape “circle” and
“ellipse” can be regarded as similar to each other. Fig-
ure 4 gives a demonstration. For new concept

X< XmXX www ,,, 21 L >, calculate ∑
=

′⋅
m

j
jxj sw

1

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 699

where ′
js coming from above SMj (j∈[1,m]) (Figure 4)

based on the New_WM (filtered).

Fig. 4. Similarity matrixes

Step 3: Function sort_result
Sorting above values in the descending order and select-
ing candidates (notated as Selected_New_WM) whose
summary values are greater than the threshold (2δ). If

there is no one with a sum value greater than 2δ , go to
step 5. Again, getting corresponding Selecte_New_VM
as well.

Step 4: Function generate_new_cluster
(1) Appending new concept X’s weight vector

wX and value vector vX to the Selected_New_WM and
Selected_New_VM respectively.
(2) Selecting all attributes (mapping to AV and satis-
fying corresponding elements in Selected_New_WM
which are greater than threshold 3δ) to form a New_AV.
(3) Making an intersection to obtain how many at-
tributes are involved (with a corresponding weight in
Selected_New_WM which is greater than 3δ) if possible.
Otherwise go to step 5.
(4) Making an intersection to obtain what values are
involved (with a corresponding weight in Se-
lected_New_WM which is greater than 3δ) if possible.
Otherwise go to step 5.
(5) The newly generated cluster features with value
vector vY and weight vector wY as well. It is worthy not-
ing that the newly generated cluster features with 1’s (if
it has corresponding attribute) or 0’s (no such property)
rather than other values between (0, 1).

Step 5: Function attach_new_concept
Attaching the newly generated concept to the original
structure, such as in Figure 2, new concept X (enclosed
in a dotted line circle) is attached to original node B if
there is no new cluster generated, on the contrary, Y
should be attached to node A if new cluster Y is gener-
ated while the new concept X is added to the structure.

3.2 Delete Operation

As for deleting a concept from the structure, generally,
it should be relatively easy if a simple case (without any
sub concepts) is concerned (Figure 5). For other cases,
sub concepts of the deleted concept (subgraph) will be
attached to its parents (Figure 6).

(1) In Figure 5, suppose the deleted concept is t (on
the left), just delete it (see the graph on the right as the
result).

Fig. 5. Delete operation— case 1

(2) In Figure 6, suppose the deleted concept is Y (on
the left) this time, all its (Y’s) sub concepts (both X and
B) will be attached to its parent A (see the graph on the
right as the result).

Fig. 6. Delete operation— case 2

Functions such as generated_new_cluster and at-
tach_new_concept are very useful to explain the add
and delete operations. We believe more complex struc-
ture can also get some help from approaches here.

4. CONSISTENCY CHECKING

Different partners can contribute to the extension of an
ontology. In addition, the same partner may revise the
ontology from time to time. Therefore, ontology consis-
tency checking is vital to any applications based on it.
Description logics (DLs) as carefully selected parts of
first order predicate logics are designed to be expressive
enough to be useful for constructing and querying on-
tologies. Their inference engines are good at answering
subsumption and satisfiability queries. In the paper, we
use them to check consistency of refined ontology. The
basic ideas look as follows.

Generally, C and D denote any concepts, R for the role
name. The semantics is given by means of interpretation

I. An interpretation is a pair of domain I∆ and interpre-
tation function I⋅ , namely I = (I∆ , I⋅). With parts of
constructors, interpretation I for concepts is defined in
Table 1

Table 1. Parts of constructors of DLs
Construc-

tor
Syn-
tax

Semantics

Atomic role R IIIR ∆×∆⊆
Conjunction
(AND) C? D

II DC ∩

Disjunction
(OR) C? D

II DC ∪

Negation
(NOT) ¬ C

I∆ \ IC

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 700

Existential
restrict ? R.C { }II CyRyxyx ∈∧∈><⋅∃ ,|

Universal
restrict ∀R.C { }II CyRyxyx ∈⇒∈><⋅∀ ,|

In terms of ontology consistency checking, we have

axioms like C? D (C is subsumed by D, “? ” notates
subsumption relation in DLs) iff C? ¬D? ⊥,that is to

say C? ¬D is not satisfiable (inconsistent). We use an-
notations like property1, property2, etc. to notate differ-
ent attributes shown in Figure 1 by ignoring what it
really means. Based on the DL model, the taxonomy
structure (Figure 1) can be expressed more formally as:

A? B? C? D? ? property1.f

B? A

B? E? F

C? A? ? property2.c? ? property3.d

D? A? ? property3.d? ? property4.e

E? B? ? property5.a? ? property6.b

F? B? ? property6.b? ? property2.c? ? property7.g

For new concept X from Figure 5, it looks like:

X? B

X? W? ? property7.t

The satisfiability and subsumption can be used during
ontology construction to verify whether the ontology is
consistent or not. We assume it is consistent initially.
When the primitive operations have been processed, DL
can answer the questions such as ‘is a concept consis-
tent with the source ontology?’, and ‘Is this concept a
part of another?’. For instance (Now look at the case

that X is attached to B), X? ¬? property1.f is inconsis-

tent because of X? B (given condition), B? A (already

known condition) and which implies X? A.

X? ¬? property1.f is not satisfiable because it contra-

dicts with the reasoning result X? A (property1.f is one
of properties of concept A shown in Figure 1). As the
above consistency checking is conducted according to
Figure 1 which is platform- and description language-
independent, it is promising to deal with ontology re-
finement in the is-a hierarchy in general.

5. EXAMPLE

A simple example below will show how a new node is
added and a new node is generated by applying cluster
analysis. In this example, we assume 1δ , 2δ ,and 3δ
(Figure 3) equal to zero. Euclidean distance, computed
as: distance ∑ −=

i ii yxyx 2)(),(, is used to measure

“distance”, and the shortest distance in a Euclidean dis-
tance matrix will determine which pair of nodes will be
fused to form a cluster. First we demonstrate a dendro-
gram construction through the example, then we con-

sider adding a new node to this hierarchical structure to
refine it.
Now suppose there are 4 nodes V1(2,3), V2(5,1), V3(4,4),
V4(1,2). Their corresponding Euclidean distance matrix
is shown in Figure 7.a. It shows that the most similar
nodes are V1 and V4 (the value is 1.4). Then we get a
new cluster V14(1.5,2.5), a means of these two nodes is
calculated for each dimension. That is to say, after V1
and V4 clustered, a new node V14(1.5,2.5) is generated.
So now there are three nodes V14(1.5,2.5), V2(5,1),
V3(4,4). Repeat the above calculation, a revised distance
matrix is shown in Figure 7.b. At this stage, the most
similar nodes are V14 and V3 (the value is 2.9). Then we
get a new cluster, V143(3.5,4.5). Now there are two
nodes, V143(3.5,4.5), V2(5,1). Again we get a revised dis-
tance matrix which is shown in Figure 7.c.

The whole process is summarised by a dendrogram as
shown in Figure 8 (on the left). Suppose a new node
notated as Vx(6,5) is going to be added. As we men-
tioned before, the entire process works in a top-down
approach. The same is here. However, in this example,
we only focus on nodes on the first level (the root level
namely the top level normally is virtual item annotated
as “ENTIRY” or “THING”. In real cases, the attribute
matrix will determine to which level the algorithm is af-
fectted. The worst case is that all existing concepts will
be taken into consideration), namely V143(3.5,4.5),
V2(5,1). At this stage, calculations are between these
three nodes. That is Vx(6,5), V143(3.5,4.5), and V2(5,1).
At the end, the distance matrix is shown in Figure 7.d.
It is clear that the most similar pair is V143 and Vx (the
value is 2.5). The revised dendrogram is shown in Fig-
ure 8 (on the right). New node Vx is added in and fused
with V143 to form a cluster Vx143 which can be regarded
as a new generated concept in the ontology refinement
process.

(a) (b) (c) (d)

Fig 7. Euclidean distance matrixes

This example demonstrates our ontology refinement
process, especially the add operation works well by tak-
ing attribute-value pair “distance” and clustering analy-
sis. It is no doubt that in the real world, the refinement
for ontology, which includes many concepts, is defi-
nitely more complicated than the example. However,
the basic ideas and mechanisms to refine the ontology
are quite similar to the method here.

Fig. 8 New cluster in dendrogram construction

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 701

6. CONCLUSIONS AND FUTURE WORK

In this paper, our general focus is on developing a new
approach to deal with the refinement for ontology evo-
lution in virtual enterprises. A novel clustering algo-
rithm has been applied to classify new concepts. Unlike
other methods in ontology refinement, our approaches
can classify the new concepts automatically instead of
specified or semi-specified manually. In addition, the
primitive add and delete operations are provided. Fur-
thermore, we have illustrated that consistency checking
should be a crucial element within the ontology evolu-
tion life cycle to guarantee that any application has a
sound knowledge of the world. The consistency check-
ing of the concepts makes our approach in accordance
with knowledge management requirements in preserv-
ing knowledge and sharing knowledge. In addition, we
believe that clustering analysis is a promising way to
knowledge acquisition and ontology management.
Moreover, differentiating abstract concepts from con-
crete ones are useful when we address the hierarchical
taxonomic structures.

There are many issues remaining as future work. The
semantic meaning of new clustering cannot be fully
achieved only through the vector descriptions. More-
over, deleting is not as easy as people first thought. An-
other aspect is the structure for ontology consistency
checking. Consistency checking needs to be emphasised
in ontology evolution by considering multiple users. In
addition, it is nevertheless essential to address the at-
tribute weighting issue not only in a deterministic envi-
ronment but also in a non-deterministic environment.

ACKNOWLEDGEMENT

Work reported in this paper is partly supported by
Swinburne Vice Chancellor’s Strategic Research Initia-
tive Grant 2002-2004 for project “Internet-based e-
business ventures”.

REFERENCES

[1] Alfonseca, E. and Manandhar, S., Proposal for
Evaluating Ontology Refinement Methods, In: Proceed-
ings of 3rd International Conference on Language Re-
sources and Evaluation (LREC-2002), Las Palmas,
Spain, 2002.
http://www.ii.uam.es/~ealfon/esp/pubs.html.
[2] Baader, F., Horrocks, I., and Sattler, U., Descrip-
tion Logics as Ontology Languages for the Semantic
Web, Lecture Notes in Artificial Intelligence. Springer-

Verlag, 2003.
http://www.cs.man.ac.uk/~horrocks/Publications/.
[3] Byrne, J. A., Brandt, R., and Bort, O., The Virtual
Corporation, Business Week, vol. 8, pp. 36-40, February
1993.
[4] Devedzic, V., Understanding Ontological Engi-
neering, Communications of the ACM, 45(4), pp. 136-
144, April 2002.
[5] Fischer, K., Müller, P. J., Heimig, I., and Scheer,
W. A., Intelligent Agents in Virtual Enterprises, In:
Proceedings of the 1st International Conference on
Practical Applications of Intelligent Agents and Multi-
Agent Technology (PAAM'96), London, 1996.
[6] Gruber, T. R., Toward Principles for the Design
of Ontologies Used for Knowledge Sharing, KSL-93-
04, Knowledge Systems Laboratory, Stanford Univer-
sity. http://ksl-web.stanford.edu/.
[7] Horrocks, I. and Sattler, U., A Description Logic
with Transitive and Inverse Roles and Role Hierarchies,
Journal of Logic and Computation, 9(3), pp. 385-410,
1999.
[8] Maedche, A. Ontology Learning for the Semantic
Web, Kluwer Academic Publishers, 2002.
[9] McNeill, F., Bundy, A., and Schorlemmer, M.,
Dynamic Ontology Refinement, Informatics Research
Report EDI-INF-RR-0177, School of Informatics, Uni-
versity of Edinburgh, June 2003.
[10] Noy, N. F. and Klein, M., Ontology Evolution:
Not the Same as Schema Evolution, Knowledge and In-
formation Systems, In press. Available as SMI technical
report SMI-2002-0926 (2002).
http://smi.stanford.edu/people/noy/publications.html.
[11] Noy, N. F. and Musen, M. A., PROMPT: Algo-
rithm and Tool for Automated Ontology Merging and
Alignment, In:Proceedings of the 17th National Con-
ference on Artificial Intelligence (AAAI-2000), Austin,
TX, 2000.
[12] Petersen, S. A., Using Agents to Support the Se-
lection of Virtual Enterprise Teams, In: Proceedings of
4th International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS-2002) (at AAMAS
2002), Bologne, Italy, July 2002.
[13] Petersen, S. A., Divitini, M., and Matskin, M., An
Agent-based Approach to Modelling Virtual Enter-
prises, International Journal of Production Planning
and Control, 12(3), pp. 224-233, April 2001.
[14] Stojanovic, L., Maedche, A., Motik , B., and Sto-
janovic, N., User-driven Ontology Evolution Manage-
ment, In: Proceedings of the 13th European Conference
on Knowledge Engineering and Knowledge Manage-
ment EKAW, Madrid, Spain, 2002.
[15] Tryon, R. C. and Bailey, D. E. Cluster Analysis,
McGraw-Hill, New York, NY, 1973.

