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ABSTRACT 

Virtual enterprise is based on the premise that work should be done where it can be done most optimally. In virtual en-
terprises, geographical boundaries merge seamlessly. It enables organisations to act in a way of flexibility and ability to 
adapt to rapid changes on the fly. However, different parties in a virtual enterprise must understand each other before 
they go further details in business. Ontologies are such kinds of ideal baselines to assist parties to communicate. One of 
the essential research issues with ontology is how to deal with changes during their evolving cycle. Therefore, ontology 
refinement is a crucial component in ontology evolution. This paper presents a taxonomy structure focusing on the is-a 
relations. In particular, the concept of closeness measurement is introduced based on the “distance” estimation. An ex-
tended cluster analysis process is provided. According to the algorithm presented, a new concept is generated according 
to its attributes. Additionally, the refinement mechanisms for primitive operations are proposed. Unlike some other on-
tology refinement mechanisms which leave ontology consistency checking to human users after modification, our 
method emphasises the importance of consistency checking by applying description logics which is demonstrated based 
on the proposed ontology.  
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1. INTRODUCTION 

An ontology can be defined as an explicit specification 
of conceptualisation [6]. Currently, the use of ontology 
for different purposes such as Web applications, Web 
semantics, information systems, are intensively ad-
dressed. The ontology is important because it is the 
foundation for different organisations to understand 
each other within or across enterprises. Feasible 
ontologies in virtual enterprises (VEs) are especially 
important because of VE’s characteristics: VEs only ex-
ist for a short life span as a temporary network of geo-
graphically distributed partners that cooperatively work 
together to share skills, costs, profits, risks, and markets, 
and, at the same time, decrease the investment [3].  VEs 
are not rigid organisational structures within rigid 
frameworks, but rather, heterogeneous ensembles, con-
tinuously evolving over time [13]. For this reason, a 
complete ontology is essential for VE formation be-
cause of its pressing time requirement and heterogene-
ity. However, there indeed exist cases when some con-
cepts/attributes and their relations are out of date or 
cannot be accessed through the current ontology. Ac-
cording to Stojanovic [14], there are seven different re-
quirements demanding ontology evolution. In addition, 
a six-phase evolution process is addressed. Other re-
searchers [12,14] also note that ontology development is 
a dynamic process starting with an initial rough ontol-
ogy, which is revised, refined and filled with details on 
an ongoing basis. That is to say, ontology refinement is 
important and needs more efforts throughout its entire 
lifecycle. In VEs where different parties might work on 
an ontology collaboratively, dynamically refining the 
ontology is likely to be more important than that in any 
other places.  
 

Intelligent software agents (agents hereafter) are a suit-
able means of representing the partners of a VE [5]. 
Agents act on behalf of the enterprises or organisations 
that collaborate among themselves to achieve a specific 
goal under assumptions that they are goal-oriented, 
commitment-based and able to share skills, cost, profits, 
risks and markets [12]. We assume agents who are 
likely to form a VE have similar but slightly differing 
ontologies rather than completely different ones. This is 
reasonable in the real world for different partners having 
something in common within the domain.  
 
Some work has been performed on tackling ontology re-
finement. Noy’s work [10] talks about that both merg-
ing and alignment are two processes which are usually 
used to handle the ontology refinement. These two 
processes are illustrated in PROMPT [11], a semi-
automatic approach to ontology merging and alignment 
where users’ intervention is required. In his book [8], 
Maedche mentions an essential part of ontology engi-
neering ontology learning. The development of the 
taxonomic backbone of the ontology is also involved. 
The clustering analysis mainly discussed in natural lan-
guage processing previously, has been highlighted from 
learning the taxonomic relation perspective. 
 
Generally speaking, existing refining proposals fall into 
two categories. One is to investigate ontology dynamic 
changes and the corresponding management from the 
knowledge engineering perspective [1,4,8,14]. The 
other is from the context of plan execution [9]. How-
ever, in light of their proposed approaches, a new term’s 
relationships with existing concepts are specified/semi-
specified by human users. By doing so they avoid indi-
cating how they get to know the relations between con-
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cepts. That is to say that they fail to address how they 
get to know the relations between new terms and the ex-
isting ones and whether the ontology is still consistent 
after some modifications. 
 
To comply with the requirements, our main task will be 
on adjusting the proposed ontology structure to any 
changes of concepts and their relations while at the 
same time processing consistency checking with the 
source ontology. We use a statistics-based approach, es-
pecially the cluster analysis method first to obtain a cor-
responding classification of the terms (in the is-a con-
cept hierarchy). Then we use description logics (DLs) 
[2,7] to check if the newly added concepts are consistent 
with the original ontology structure by considering their 
satisfiability and subsumption. The novel contribution 
of this paper is to provide a method that operates in a re-
silient manner in ontology refinement, and at meantime, 
consistency checking complying with the ontology evo-
lution life cycle to guarantee that any application has a 
sound knowledge of the world. 
 
We do not distinguish terms between parties, partners, 
participants and agents in this paper only if they would 
convoy much more meaning in certain circumstance. 
  
The rest of this paper is organised as follows. The next 
section first presents a taxonomy structure and then ad-
dresses the mapping between concept relations and dis-
tances. Section 3 proposes refinement mechanisms for 
the add and delete primitive operations. Section 4 dis-
cusses consistency checking of an ontology by using 
DLs. Section 5 illustrates our approach with an exam-
ple. Finally, section 6 concludes our work. 
 

2. CLUSTER ANALYSIS 
 
Term cluster analysis [15] actually encompasses a 
number of different classification algorithms. Two 
things are worth noting here. One general question fac-
ing cluster analysis in many areas is how to organise 
observed data into meaningful structures— taxonomies. 
Another is a suitable algorithm for a specific question. 
In this paper, concepts are organised as the higher the 
level of concept aggregation the more abstract these 
concepts are in the respective class. We borrow term 
“distance” to show close/loose relations in the paper. In 
addition, we use the term “new cluster” to notate a new 
generated concept if needed in a dendrogram. It will be 
discussed in more detail in section 3. 

 
2.1 Taxonomy Structure 
 
A concept definition, along with its relations and others 
(if they exist), is more likely to be described in a taxon-
omy (the “is-a” hierarchy) structure. The most central 
relations are the is-a relation (concept— concept) and 
property-of relation (concept— attribute). Like in Figure 
1, nodes in squares with capital letters such as A, B, C, 
D, E, and F are abstract concepts whereas other nodes 

notated in circle with lowercases are concrete ones. The 
difference between an abstract concept and a concrete 
one lies in that the abstract one subsumes sub concepts. 
In this paper, concrete concepts are specifies with primi-
tive or common knowledge in terms of attributes and 
properties. For instance, in a general “transport” ontol-
ogy which describes different transports such as “ship”, 
“airplane”, “bus”, and “train” etc. and their relation-
ships, concepts like “ship”, “airplane”, “bus”, and 
“train” are abstract concepts, while  “mph”, and “capac-
ity” are concrete concepts to define the attributes of a 
specific transport. Clearly, concept B subsumes both E 
and F, whereas B is subsumed by another concept A. 
And lowercase f is a property-of concept A. Obviously, 
the higher the concept is, the more abstract it is. Ontol-
ogy structure in this paper is described in the “is-a” hi-
erarchical structure. And we will refer to Figure 1 again 
in subsequent sections. Understanding how a dendro-
gram is constructed, and how it should be interpreted, is 
helpful to understand ontology refinement by using 
clustering analysis. The next subsection will discuss 
Figure 1 in-depth from the cluster analysis perspective. 

 
Fig. 1.  Taxonomy structure of concepts 

 
2.2 Mapping Concept Relations and Distances 
 
Every concept, no matter it is a concrete or an abstract 
concept, has a set of attributes with different levels of 
granularity. Generally speaking, a concept can be ex-
pressed by a set of triples of (attribute, value, weight), 
namely Aatt=<(a1, v1, w1), (a2, v2, w2),…  ,(am, vm, wm)>, 
where aj is an attribute and vj is the corresponding value. 
Here wj ( j∈  [1, n] ) is represented by a real number in 
range [0,1]) which is an estimation standing for to what 
extent an attribute getting a specific value (1 means 
matching perfectly, while others mean they can be ap-
proximately equal to those values). An instance such as 
(shape, circle, 0.8) means that a concept has attribute 
“shape” with value “circle”, but not a 100 percent circle, 
the closeness estimation is only 0.8 instead of 1.  
 
In order to reduce redundancy, a value matrix (VM in 
short), a corresponding attribute vector (AV), and its 
corresponding weight matrix (WM, in which 0 means 
corresponding attribute is N/A) are introduced below. It 
is easy to get a triple mentioned above such as (shape, 
circle, 0.8). 
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It is clear that the concept similarity, which is based on 
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relevant matrixes and closeness measurement, deter-
mines the relations between the concepts. In terms of 
the closeness measurement, “distances” between the at-
tributes will be calculated. Obviously, the smaller “dis-
tance” means much more similar than that of greater 
“distance”. 
 
In order to calculate the distance, similarity matrixes 
(also symmetric matrixes, notated as SM1, SM2, SMj, … , 
SMm for simplicity), where SMj corresponds to the jth at-
tribute in the AV vector and their different values, are 
provided. These matrixes show how close these values 
are (similarity closeness ∈[0, 1], in which 1 means per-
fectly matching, 0 means never matching, other value 
∈(0, 1) means approximate matching).  
 
Let us recall all of them before we start to discuss our 
approaches. In order for agents to automatically refine 
their individual ontologies, firstly, a value matrix (VM), 
a corresponding attribute vector (AV), and its corre-
sponding weight matrix (WM) must provide. Moreover 
we suppose that similarity matrixes (SM1, SM2, SMj, … , 
SMm) are available for the proposed ontology and their 
attributes. In addition, we always treat ontologies are 
consistent initially. Without this our consistency check-
ing will make no sense. 
 

3. REFINEMENT MECHANISMS 
 
As indicated earlier, ontology evolves overtime in the 
real world. How to refine ontology on the fly needs to 
be handled properly. In this section, we consider two 
primitive operations, i.e. add and delete as the refine-
ment mechanisms based on the ontology structure and 
cluster analysis discussed earlier in this paper.  

 
3.1 Add Operation 
 
When we consider the add operation, generally there are 
two cases: (1) a new concept is subsumed by another 
concept; (2) a new cluster (concept) needs to be created 
in order to subsume a new concept. It is also possible 
that a new cluster may generate another bigger new 
cluster afterwards. Let us consider new concept X (only 
considering an abstract concept here) in Figure 2. In one 
case (on the left), X is subsumed by concept B, while in 
another case (on the right) shows that a new cluster Y 
(being subsumed by concept A), is generated which sub-
sumes both B and X. 

 
Fig. 2. Two cases of adding operation 

 
For the reason that the number of the attributes might 
vary from concept to concept, for simplicity, the biggest 
number will determine the cardinality of the VA. In this 

case, there must be some empty elements in VM, here 
“N/A” is used to notate no such a property in VM. Figure 
3 is the flow chart to add a new concept through top-
down in the hierarchy. 
 

                        
Fig. 3.  Flow chart of adding a new concept  
 
First of all, we assume that new concept X has the same 
attribute vector (AV) as others do. Of course, some 
properties are “N/A” under certain circumstance, so does 
the weight matrix (WM) with corresponding 0’s value. 
Additionally, X’s weight vector wX and value vec-

tor vX  are also provided. The details are as follows. 
 
Step 1: Function sort_WM 
It mainly deals with sorting weight matrix (WM) by re-
ferring to X’s 1’s distribution by referring to its weight 
vector wX (each Xjw ∈ [0, 1]). The sum-

mary∑
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corresponding to the element in WM, ∈Xjw [0,1], cor-

responding to the element in wX is filtered by a thresh-

old ( 1δ ) which is given apriori.  
(1) The values that are less than the threshold are 
ignored.  
(2) If all values are less than the given value, the 
process leads to the END of the adding process. That is 
to say, the new concept X is irrelevant to the existing 
concept taxonomy structure.  
(3) Otherwise all selected vectors form a new 
weight matrix New_WM and a new value matrix 
New_VM respectively (only related concepts are left af-
ter this step). 
 
Step 2: Function calculate_closeness 
As mentioned before (Section 2.2), SMj (j∈[1,m]) as a 
similarity matrix (it is symmetric) provides similarity 
measurements of different values upon a specific attrib-
ute. For example, an attribute “shape” has a matrix 
(SMj) to estimate to what extent the shape “circle” and 
“ellipse” can be regarded as similar to each other.  Fig-
ure 4 gives a demonstration. For new concept 
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where ′
js coming from above SMj (j∈[1,m]) (Figure 4) 

based on the New_WM (filtered). 

 
Fig. 4.   Similarity matrixes 

 
Step 3: Function sort_result 
Sorting above values in the descending order and select-
ing candidates (notated as Selected_New_WM) whose 
summary values are greater than the threshold ( 2δ ). If 

there is no one with a sum value greater than 2δ , go to 
step 5. Again, getting corresponding Selecte_New_VM 
as well. 
 
Step 4: Function generate_new_cluster 
(1) Appending new concept X’s weight vector 

wX and value vector vX  to the Selected_New_WM and 
Selected_New_VM respectively.  
(2) Selecting all attributes (mapping to AV and satis-
fying corresponding elements in Selected_New_WM 
which are greater than threshold 3δ ) to form a New_AV. 
(3) Making an intersection to obtain how many at-
tributes are involved (with a corresponding weight in 
Selected_New_WM which is greater than 3δ ) if possible. 
Otherwise go to step 5. 
(4) Making an intersection to obtain what values are 
involved (with a corresponding weight in Se-
lected_New_WM which is greater than 3δ ) if possible. 
Otherwise go to step 5. 
(5) The newly generated cluster features with value 
vector vY  and weight vector wY as well. It is worthy not-
ing that the newly generated cluster features with 1’s (if 
it has corresponding attribute) or 0’s (no such property) 
rather than other values between (0, 1). 
 
Step 5: Function attach_new_concept 
Attaching the newly generated concept to the original 
structure, such as in Figure 2, new concept X (enclosed 
in a dotted line circle) is attached to original node B if 
there is no new cluster generated, on the contrary, Y 
should be attached to node A if new cluster Y is gener-
ated while the new concept X is added to the structure. 
 
3.2 Delete Operation 
 
As for deleting a concept from the structure, generally, 
it should be relatively easy if a simple case (without any 
sub concepts) is concerned (Figure 5). For other cases, 
sub concepts of the deleted concept (subgraph) will be 
attached to its parents (Figure 6).  

(1) In Figure 5, suppose the deleted concept is t (on 
the left), just delete it (see the graph on the right as the 
result).  

 
Fig. 5.  Delete operation— case 1 

 
(2) In Figure 6, suppose the deleted concept is Y (on 
the left) this time, all its (Y’s) sub concepts (both X and 
B) will be attached to its parent A (see the graph on the 
right as the result).  

 
Fig. 6. Delete operation— case 2 

 
Functions such as generated_new_cluster and at-
tach_new_concept are very useful to explain the add 
and delete operations. We believe more complex struc-
ture can also get some help from approaches here. 
 

4. CONSISTENCY CHECKING 
 
Different partners can contribute to the extension of an 
ontology. In addition, the same partner may revise the 
ontology from time to time. Therefore, ontology consis-
tency checking is vital to any applications based on it.  
Description logics (DLs) as carefully selected parts of 
first order predicate logics are designed to be expressive 
enough to be useful for constructing and querying on-
tologies. Their inference engines are good at answering 
subsumption and satisfiability queries. In the paper, we 
use them to check consistency of refined ontology. The 
basic ideas look as follows. 
 
Generally, C and D denote any concepts, R for the role 
name. The semantics is given by means of interpretation 

I. An interpretation is a pair of domain I∆ and interpre-
tation function I⋅ , namely I = ( I∆ , I⋅  ). With parts of 
constructors, interpretation I for concepts is defined in 
Table 1 
 

Table 1.  Parts of constructors of DLs 
Construc-

tor 
Syn-
tax 

Semantics 

Atomic role R IIIR ∆×∆⊆  
Conjunction 
(AND) C? D 

II DC ∩  

Disjunction 
(OR) C? D 

II DC ∪  

Negation 
(NOT) ¬ C 

I∆ \ IC  
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Existential 
restrict ? R.C { }II CyRyxyx ∈∧∈><⋅∃ ,|  

Universal 
restrict ∀R.C { }II CyRyxyx ∈⇒∈><⋅∀ ,|

 
 
In terms of ontology consistency checking, we have 

axioms like C? D (C is subsumed by D, “? ” notates 
subsumption relation in DLs) iff C? ¬D? ⊥,that is to 

say C? ¬D is not satisfiable (inconsistent). We use an-
notations like property1, property2, etc. to notate differ-
ent attributes shown in Figure 1 by ignoring what it 
really means. Based on the DL model, the taxonomy 
structure (Figure 1) can be expressed more formally as:  

A? B? C? D? ? property1.f     

B? A 

B? E? F 

C? A? ? property2.c? ? property3.d  

D? A? ? property3.d? ? property4.e 

E? B? ? property5.a? ? property6.b 

F? B? ? property6.b? ? property2.c? ? property7.g 
 
For new concept X from Figure 5, it looks like: 

X? B 

X? W? ? property7.t 
 
The satisfiability and subsumption can be used during 
ontology construction to verify whether the ontology is 
consistent or not. We assume it is consistent initially. 
When the primitive operations have been processed, DL 
can answer the questions such as ‘is a concept consis-
tent with the source ontology?’, and ‘Is this concept a 
part of another?’. For instance (Now look at the case 

that X is attached to B), X? ¬? property1.f is inconsis-

tent because of X? B (given condition), B? A (already 

known condition) and which implies X? A. 

X? ¬? property1.f is not satisfiable because it contra-

dicts with the reasoning result X? A (property1.f is one 
of properties of concept A shown in Figure 1). As the 
above consistency checking is conducted according to 
Figure 1 which is platform- and description language- 
independent, it is promising to deal with ontology re-
finement in the is-a hierarchy in general. 
 

5. EXAMPLE 
 
A simple example below will show how a new node is 
added and a new node is generated by applying cluster 
analysis. In this example, we assume 1δ , 2δ ,and 3δ   
(Figure 3) equal to zero. Euclidean distance, computed 
as: distance ∑ −=

i ii yxyx 2)(),( , is used to measure 

“distance”, and the shortest distance in a Euclidean dis-
tance matrix will determine which pair of nodes will be 
fused to form a cluster. First we demonstrate a dendro-
gram construction through the example, then we con-

sider adding a new node to this hierarchical structure to 
refine it.   
Now suppose there are 4 nodes V1(2,3), V2(5,1), V3(4,4), 
V4(1,2). Their corresponding Euclidean distance matrix 
is shown in Figure 7.a. It shows that the most similar 
nodes are V1 and V4 (the value is 1.4). Then we get a 
new cluster V14(1.5,2.5), a means of these two nodes is 
calculated for each dimension. That is to say, after V1 
and V4 clustered, a new node V14(1.5,2.5) is generated. 
So now there are three nodes V14(1.5,2.5), V2(5,1), 
V3(4,4). Repeat the above calculation, a revised distance 
matrix is shown in Figure 7.b. At this stage, the most 
similar nodes are V14 and V3 (the value is 2.9). Then we 
get a new cluster, V143(3.5,4.5). Now there are two 
nodes, V143(3.5,4.5), V2(5,1). Again we get a revised dis-
tance matrix which is shown in Figure 7.c. 
 
The whole process is summarised by a dendrogram as 
shown in Figure 8 (on the left).  Suppose a new node 
notated as Vx(6,5) is going to be added. As we men-
tioned before, the entire process works in a top-down 
approach. The same is here. However, in this example, 
we only focus on nodes on the first level (the root level 
namely the top level normally is virtual item annotated 
as “ENTIRY” or “THING”. In real cases, the attribute 
matrix will determine to which level the algorithm is af-
fectted. The worst case is that all existing concepts will 
be taken into consideration), namely V143(3.5,4.5), 
V2(5,1). At this stage, calculations are between these 
three nodes. That is Vx(6,5), V143(3.5,4.5), and V2(5,1). 
At the end, the distance matrix is shown in Figure 7.d.  
It is clear that the most similar pair is V143 and Vx (the 
value is 2.5). The revised dendrogram is shown in Fig-
ure 8 (on the right). New node Vx is added in and fused 
with V143 to form a cluster Vx143 which can be regarded 
as a new generated concept in the ontology refinement 
process.  
   

  
(a)        (b)               (c)              (d) 

Fig 7. Euclidean distance matrixes 
 
This example demonstrates our ontology refinement 
process, especially the add operation works well by tak-
ing attribute-value pair “distance” and clustering analy-
sis. It is no doubt that in the real world, the refinement 
for ontology, which includes many concepts, is defi-
nitely more complicated than the example. However, 
the basic ideas and mechanisms to refine the ontology 
are quite similar to the method here. 

            
Fig. 8 New cluster in dendrogram construction 
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6. CONCLUSIONS AND FUTURE WORK 
 
In this paper, our general focus is on developing a new 
approach to deal with the refinement for ontology evo-
lution in virtual enterprises. A novel clustering algo-
rithm has been applied to classify new concepts. Unlike 
other methods in ontology refinement, our approaches 
can classify the new concepts automatically instead of 
specified or semi-specified manually. In addition, the 
primitive add and delete operations are provided. Fur-
thermore, we have illustrated that consistency checking 
should be a crucial element within the ontology evolu-
tion life cycle to guarantee that any application has a 
sound knowledge of the world. The consistency check-
ing of the concepts makes our approach in accordance 
with knowledge management requirements in preserv-
ing knowledge and sharing knowledge. In addition, we 
believe that clustering analysis is a promising way to 
knowledge acquisition and ontology management. 
Moreover, differentiating abstract concepts from con-
crete ones are useful when we address the hierarchical 
taxonomic structures. 
 
There are many issues remaining as future work. The 
semantic meaning of new clustering cannot be fully 
achieved only through the vector descriptions. More-
over, deleting is not as easy as people first thought. An-
other aspect is the structure for ontology consistency 
checking. Consistency checking needs to be emphasised 
in ontology evolution by considering multiple users. In 
addition, it is nevertheless essential to address the at-
tribute weighting issue not only in a deterministic envi-
ronment but also in a non-deterministic environment.  
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