
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

290

Extreme Availability: Determining the Limits of Availability
in Commercial Systems

David W. Coleman, Todd W. Mummert

IBM T.J. Watson Research Center, Hawthorne, NY, 10532, USA
{xinu, mummert}@us.ibm.com

ABSTRACT

High availability has become increasingly important to businesses with the advent of the Web and various associated
e-commerce services. This paper describes the key attributes of the very highest availability systems. Such systems
and their associated support environments are qualitatively different than other systems, even other high availability
systems; for the purposes of this paper these systems at the current limit of possible availability are termed extreme
availability systems.

Keywords: High availability, fault tolerance, commercial systems

1. INTRODUCTION

The basic requirements that any trading floor
application for the New York Stock Exchange (NYSE)
needs to meet are fairly easy to define. The system
needs to be extremely reliable, highly available, very
fast, and highly scalable. While these requirements are
not unusual per se, the levels needed by the NYSE are
well beyond what most commercial off-the-shelf
software provides. The NYSE is one example of an
extreme availability environment, where no outage
during trading hours is acceptable.

Historically, extreme availability has been a specialty
area, of interest mostly for space-craft systems and
those systems where failure would cause significant
destruction and loss of life. The usual techniques for
improving availability, such as redundancy and
independent backup systems, have been used with great
success in such systems.

Commercial systems are extremely cost sensitive,
although the degree of sensitivity varies by industry.
Most businesses think about availability in much the
same way that they think of disaster recovery costs –
they determine the cost per hour (or sometimes per
minute) of an outage, and then take appropriate steps to
mitigate outages using the outage cost per hour as a cap
on potential mitigation expenses. One corollary of this
approach is that when business critical systems are
computerized the willingness to spend to increase
availability goes up sharply, since the expense cap
becomes tied to the entire business revenue stream.

Given this background, it should come as no surprise
that e-commerce is causing many companies to become
much more concerned about high availability, and in
some cases businesses are starting to look seriously at
what is required to achieve extreme availability. At
the moment, financial companies are most interested in
extreme availability, partly because they are often the
most advanced in computerizing their business

processes and partly because they tend to have the
highest cost per hour for outages. It appears, however,
that a secondary effect of the shift to e-commerce is that
high availability is becoming a critical competitive
attribute – and that extreme availability may in turn start
becoming a competitive differentiator.

There are a few key ideas which appear over and over
when considering the various aspects of availability.
They are listed here both as an introduction to the
concepts and as a convenient reference point.

MTBF stands for mean time before failure, or
sometimes mean time between failures. These two
phrases are equivalent only for those cases where the
curve which describes the failure probability over time
is a negative exponential curve, but as it happens such a
curve is frequently a good fit for hardware failures,
particularly for electronic or electrical equipment. In
summary, MTBF is a measure of how long something is
likely to stay up. Generally MTBF values are
specified as some number of months or years.

MTTR stands for mean time to repair. It is a measure
of how long it takes to fix something once it breaks.
Note that the repair time includes whatever time it takes
to diagnose the problem, acquire the repair components,
pull the failing component, do whatever repair is needed,
and reinstall the now working component.

SPOF stands for single point of failure. A single point
of failure is a system or environmental component
which, when it fails, takes down the entire system.
The significance of a SPOF is that the reliability of that
component will be an upper bound on the overall
reliability of the system. In general, any SPOF is a
weak link in a high availability chain.

This paper provides a background in the general
approaches and concerns for very high availability
systems. While these general approaches are well
known in certain areas, it is useful to revisit them in the

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

291

context of distributed e-commerce systems to
understand what aspects are most important in that
environment. To do this, the paper follows the general
overview with an overview of the techniques and
approaches used by those organizations which are most
aggressively pursuing extreme availability. Finally,
some general information is given from case studies of
such extreme availability systems, to indicate what the
limits of the commercial state of the art are today.

2. FAULT TOLERANCE

Fault tolerance is the study of how to design systems or
subsystems so that they continue to operate correctly in
the presence of components which fail. Normally the
measure for a successful design is an increase in the
overall system MTBF. There are some curious tidbits
from this area of study, such as the fact that redundancy
can actually decrease system MTBF. To understand
how and why such things can happen, it is necessary to
understand how component MTBF can impact system
MTBF. [1] [2]

2.1 MTBF – Underlying Assumptions

Large systems are composed of many parts, and to
compute the MTBF for such large systems we need a
way of composing the MTBFs for the parts. In
general,

P(exactly one of E1 and E2 occurs)
= P(E1) + P(E2) – (P(E1) * P(E2)) (1)

Note that for sufficiently small probabilities, the product
term will be quite small with respect to the overall value,
and hence we can approximate the probability that
exactly one of E1 and E2 occurs with the sum of the
probabilities of E1 and E2. (Since for fault tolerance
we are dealing with failure probabilities, and most
failure probabilities for IT systems are less than 5%, this
simplification is useful and fairly accurate. Note that
5% * 5% is 0.25%, while the sum is 10%, and that
further the accuracy of the approximation improves as
the probabilities get smaller.)

Because we are interested in the expected life span
(Mean Time Before Failure), rather than the probability
of failure in a given time span, we must find a new
function of P(E) which yields this information. For
random probability distributions this can be quite
difficult, but it turns out that a useful approximation is
to assume that the probability is memory-less, which
means that the probability of failing in the next time
interval is independent of how long it has already been
in service. With that assumption, we get

MTBF(E) = 1/P(E) (2)

 It turns out that many IT devices actually exhibit a
bathtub curve probability, with a high infant mortality
rate and a high wear out rate joined by a long period of
essentially constant and low mortality. Manufacturers

can convert such devices into memory-less devices by
using a burn-in period to eliminate infant mortality, and
setting the nominal end of life (or end of warranty) prior
to the rise due to end of life mortality.

For a device with a 5% probability of failure in any
given month, we will therefore get a 20 month MTBF.
Most systems are composed of many modules. If the
modules fail independently, we can compute the
probability of the system failing. In general, for any
set of N identical parts the MTBF for the entire set is
1/N times the MTBF for one such part.

2.2 Failure Modes

Since we are interested in fault tolerance, it is natural to
ask about the failure modes of the various devices we
are considering. Unfortunately, this question is
extremely hard to answer with complete accuracy for
most devices. Further, the answer to such a question is
tightly tied to the exact technologies used, so even
having the answer for a given device doesn’t necessarily
help in determining the answer for another similar but
not identical device.

There are a few general principles which can help
increase fault tolerance. The first such principle deals
with what are commonly called soft, or transitory errors.
Soft errors have the property that the probability of
occurrence is independent of the work being done, and
further they do not always occur even when the same
work is done. There can be various causes for soft
errors, but in terms of fault tolerance the ultimate goal
with soft errors is always the same – to mask the
occurrence of the error in such a way that there is no
immediate fault generated. The solution in these cases
always comes down to redundancy, and typically it is
implemented via error correcting codes. While ECC is
a large and complex field of study, it is also sufficiently
well understood that such codes are in widespread use
by device manufacturers to control transitory errors.
Such codes are used in all disk drives, and on almost all
communication channels.

Workload independent hard errors (also known as
non-transitory or permanent) can also be handled by
manufacturers by using redundancy, but in this case the
redundancy needed is additional hardware.

Unfortunately there are several additional classes of
errors which do not easily lend themselves to general
solutions. Workload dependent errors, such as the
floating point problem in Intel processors, are one major
example. Additionally, many devices have partial
failure modes, where things are neither working
completely nor failed completely. While most
manufacturers attempt to identify such problems with
testing, even the most rigorous testing will occasionally
miss such problems.

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

292

There is one final general approach to dealing with
failure which can be helpful, both in the real world and
for theoretical analysis of fault tolerance. This
approach is called failstop, and it works by forcing all
faults into the same terminal state, namely the stopped
state. This approach significantly aids in the design
and operation of fault tolerant systems, and as will be
seen below it also aids in the analysis of the behavior of
such systems.

2.3 Fault Tolerance Approaches

In general, fault tolerance requires two things, namely a
way of detecting failure and enough redundancy to
allow the failure to be overcome.

Under certain conditions, it is possible to turn any
device into a failstop device. The simplest way to do
that with non-failstop components is to duplicate the
device, and then use some kind of comparator to see if
the outputs of the two copies of the device agree. If
the outputs agree, the device continues to work. If the
outputs disagree, the device stops. For this process to
be feasible, of course, it must be possible to build the
needed output comparator. The major drawback to this
simple form of failstop creation is the impact on MTBF.
Because there are two copies of the basic device, the
failstop device has an MTBF which is no more than ½
the MTBF of the original device. This can of course
be mitigated by using more copies of the device; with
three copies (and a more sophisticated comparator) the
failstop device has an MTBF of 5/6 of the MTBF of the
original device. (An additional advantage of triplex or
higher redundancy arises if soft errors predominate in
the failure modes for the base components. In that
case the comparison process will completely eliminate
the soft errors, and significantly boost the overall
MTBF.)

Although building failstop devices doesn’t sound
obviously attractive at this point, things become better
once higher layers are built on top of such failstop
devices. With non-failstop components, the device
must necessarily fail as soon as there is no longer a
majority of devices working. With failstop
components, the device can continue to work as long as
at least one of the components is working, since each
component will either work correctly or stop. While
this won’t ease the redundancy cost of the additional
hardware, it has a substantial impact on MTBF. With a
duplex device, the overall MTBF moves from ½ the
component MTBF to 1.5 times the component MTBF.
With a triplex device, the overall MTBF moves from 5/6
the component MTBF to 11/6 times the component
MTBF.

The most interesting advantage of building with failstop
components only appears with one additional
assumption. If it is possible to replace failed
components without taking down the entire device, and

synchronize the new component if necessary, then the
MTBF calculations change significantly. The device
will fail if all but one of the components are unavailable,
and then the remaining component fails. This yields
the following equation for a device made with n copies
of a failstop component:

The MTBF for the n component device with repair is:

MTBF/n * (MTBF/MTTR)n-1 (3)
or rewriting slightly

MTBFn / (n * (MTTR)n-1) (4)

Using our usual 95% reliable components, and
assuming that repair takes a full day, we find that the
MTBF for a duplex device is made from 20 month
MTBF components is approximately 1000 months, or
roughly 80 years. Using the same components, a
triplex device will provide an MTBF of approximately
80,000 months, or roughly 6500 years.

Note that using a comparator and duplex or triplex (or
more) is not the only way to provide fault tolerance.
The key to fault tolerance is spare hardware and some
way to detect failure, with the spare hardware used to
correct the detected fault. As an example of another
alternative approach, consider RAID 5 disk drives.
What is done for RAID 5 is to use a redundant coding
on the, with the extra drives needed by RAID 5 used to
increase storage to hold the extra bits required by the
redundant encoding. [3] [4] [5]

2.4 The Bad News

From the preceding discussion, it is clear that whenever
we have workload independent failure modes, either
soft or hard, and devices which are memory-less in their
failure mode, which are relatively reliable and easy to
repair, it is possible to build fault tolerant devices with
very high MTBF.

An obvious question is then what large system
components do not exhibit the needed properties. And
unfortunately there is one key area which does not fit
the picture – software. Even worse, the characteristic
which is least compatible with the assumptions is the
primary assumption behind much of the fault tolerance
work, namely the assumption that most failure modes
are workload independent.

When most of the failures are a function of the
workload done, no voting scheme which uses multiple
copies of the same software increases reliability.

As a practical matter, most people designing systems for
high availability deal with the issue of software faults
by relying on one of the demonstrated advantages of
software, namely that the defect rate decreases with use.
Thus, it is common for systems with high sensitivity to
failure to prefer software which has been in wide or
long term use elsewhere to take advantage of the

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

293

improved defect rate. Additionally, there is likely to
be a much greater emphasis on testing for such systems.

One additional area of workload dependent failure
warrants special attention currently. This is the area of
security issues and faults. While there have been
security issues and bugs since the earliest days of
computing, even in systems which were designed from
the ground up with security in mind, the Internet has
increased the significance of such issues. The problem
is that the Internet makes networked computers more
widely available. While this is a good thing in terms
of increasing the usefulness of such computer systems,
it also allows those with harmful intentions access to the
systems. These people will typically search out
security faults of various types, in order to exploit the
weaknesses for their own purposes.

2.5 Fault Tolerance Summary

Standard failure analysis has yielded tremendous gains
in hardware component reliability (disk drives have
gone from MTBF of hundreds of hours to MTBF of tens
of thousands of hours over the last few decades for
instance). Further, the work on high availability
systems has yielded a number of highly effective
techniques for composing the improved components
into larger systems which are even more reliable (one
notable innovation being RAID 5).

The approaches used for hardware fault tolerance have
not been noticeably successful in providing software
fault tolerance. Curiously enough, until recently this
has not been a major issue in the design of highly
available systems, largely because the software failure
rate was sufficiently low that other modes of failure
dominated in the overall failure modes. Improvements
in hardware reliability, coupled with a trend toward
attacks on systems via software defects, are likely to
increase the urgency for solutions in this area going
forward.

3. HIGH AVAILABILITY

High availability is yet another way of looking at the
issue of IT system faults and the key ideas of MTBF and
MTTR. In the case of high availability, the focus is on
the end user experience. Thus, high availability is
normally expressed in terms of per cent availability of
the process or function supplied by the associated IT
system. Note that availability will be increased by
either increasing MTBF or by reducing MTTR
.
3.1 Availability and Target Percentages

While availability is normally expressed in percentage
terms, since those percentages are frequently over 90%,
it can be useful to convert the percentages into minutes
of downtime per year. Thus 99.9% availability is
about an hour a year of downtime, while 99.999%

availability is about 5 minutes a year of downtime.

While this is easy enough to understand, there is a
complication in how availability can be calculated
which can impact the downtime numbers above. In
computing downtime, some people exclude planned
downtime (for things like upgrades or hardware
maintenance), and some don’t.

The mathematical calculations above are interesting.
More interesting is the question of what end users
should really expect. In general this is a hard question,
which depends on many details of the actual system
under consideration, but the following quote seems
pertinent.

The availability specification for the Windows NT server
is about 99.5 percent. UNIX has something like 99.7
percent availability and OS/390 has 99.999. When you
think about it, that means your unplanned downtime on
an NT server will average about 50 hours per year.
With UNIX, the number is around 26 hours per year.
And, with OS/390, you are looking at 5 minutes of
unplanned downtime per year. Considering the cost to
companies for an hour of unplanned downtime --
$100,000 for a retail operation, $6 million or more for a
brokerage – you can see that the drive to client/server is
a costly one. [6]

3.2 Improving Availability

Improving availability is not an all or nothing process.
It is possible to improve the availability of individual
subsystems. This is fortunate, since the cost of
applying high availability principles to entire IT systems
will increase the cost of the system by a factor of 2 to 4,
depending on system details.

The obvious place to start in improving availability is
wherever outages are causing the most pain. For each
such pain point, alternatives can be developed using the
various techniques which have been outlined above.
Then the cost of implementing the various alternatives
can be determined, and weighed against the business
benefit to be gained. As an example, let us assume
disk drive failures are causing a significant productivity
loss. A few alternatives to increase availability are
backups (which can significantly reduce MTTR), raid
arrays, various kinds of networked storage (SAN or
NAS), and of course using a more reliable brand of disk
drive. The disk drive business has grown sufficiently
competitive that all the major vendors offer roughly
equivalent MTBF ratings, so that alternative is unlikely
to bring useful gains in reliability. Backups are likely
the cheapest alternative, so if an hours long outage for
restoration (and possible loss of any work done since
the last backup) is acceptable, this might be a
worthwhile alternative. Raid arrays will entail the cost
of a new raid controller and additional disk drives for
the particular raid mode chosen, but will provide

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

294

significantly increased MTBF, and in some cases lower
MTTR also. Networked storage will entail acquiring
the appropriate storage boxes, as well as some increased
administrative overhead. Note further that both
networked storage solutions and backup solutions can
be shared among multiple systems, so even determining
the cost of an alternative is specific to the business
making the choice. Given the multitude of technically
feasible solutions, business requirements and tradeoffs
dominate in determining the exact nature and level of
high availability appropriate for any given IT system.

Any business with a large number of similar systems
can usually determine fairly easily which components
most commonly cause outages. For smaller businesses,
or for unusual configurations, it will be necessary to rely
on outside data to determine the components most likely
to cause problems.

One final point may be useful for any business working
on improving availability. Initially it is easy to look at
overall statistics on business wide outages and
determine which areas need attention. However, once
availability improves enough, even a large business is
likely to find that the weekly variation in outage causes
starts to disguise the underlying trends, and make it hard
to gain further improvement. The exact point at which
this occurs is largely a function of the size of the
business, but in general this sort of problem will start to
appear around 99.5% availability. When this starts to
happen, it will likely be useful to shift to considering
not overall outage statistics, but rather statistics on the
longest outages. Normally at this point reducing the
length of the longest outages will provide a significant
boost to overall availability. [7]

3.3 An Overview of System Failures

As we have seen above, having information on what
kinds of system or component failures to expect makes
the process of improving availability much easier.
This makes published data summarizing all failures, by
source of failure, for a large number of systems of
considerable value. There are, however, two problems
with such data.

The first problem is that there are almost no such studies.
The only published work we are aware of that cover all
system failures for a large number of systems is the
work covering an analysis done by the Japanese
Information Processing Development Corporation
(JIPDEC) in the mid 1980’s. This study surveyed the
outages reported by 1,383 businesses in 1985, and
covers 7,517 outages with an average outage duration of
about 90 minutes. This yields an overall MTBF for the
systems of about ten weeks, and an availability of
99.91%. [8]

The second problem is that the data is very dependent
on the technologies used in creating the system. While

there are specialists who can determine the expected
reliability of a system, using detailed calculations on all
the various components of the system, this work is quite
hard and expensive – normally it is easier to simply
observe actual performance. This is particularly true
since one of the key components of the system, the
software (operating system, middleware, and
application) typically does not come with a rigorous
MTBF guarantee.

Despite these two caveats, it is interesting to see what
has been found, and combine it with the technology
trends in the intervening years to provide some guidance
on what areas will most likely benefit from improved
availability efforts.

In the mid-1980’s conventional wisdom was that disks
were the major concern for reliability, because they
were mechanical. This was borne out by disk MTBF
values of about 10,000 hours, although some vendors
were producing disks which were both significantly
more expensive and more reliable. Although disks
have remained mechanical, they now exhibit advertised
MTBF values of 50,000 hours, and actual experience
indicates MTBF values of between 5 and 10 years.
While not all the MTBF news is good, as will be seen in
the next section, in general computer hardware has
become significantly more reliable, and requires
significantly less maintenance than was true during the
JIPDEC study.

But is improved hardware and maintenance enough?
Note that while the MTBF with 1980’s hardware and
software was 10 weeks, even with perfect vendor
hardware and software the JIPDEC average MTBF
would only rise to 4 months. With an average repair
time of 90 minutes, this would correspond to an
availability of only about 99.95%. Vendor product
improvements are clearly important, but also clearly not
enough to achieve the high availability goals.

3.4 External Factors

It is useful to consider the impact of WAN connectivity
and the power network, which are typically not under
the direct control of the business attempting to provide a
high availability system. In North America,
communication line suppliers will provide service
guarantees of 95% error free seconds, bit error rates of
no more than 1 error per million bits, and 99.7%
availability. Redundant message encoding and
duplexing transmissions via independent paths can mask
most transient failures, but 99.7% availability is
significantly lower than even a PC server. Further, a
1998 study by RTO West, a Canadian power supplier
indicated that for their system power was available at
the point of delivery only about 98% of the time. Once
again, this sort of low external availability can be
overcome with careful system design.

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

295

3.5 Fault Tolerance Summary

There are five normal sources of outage: 1) Hardware; 2)
Software; 3) Operations; 4) Maintenance; and 5)
Environment. (Environment includes all items which
are not considered part of the system of interest, such as
the building(s) the system sits in or the power or
machine room cooling systems.)

The base reliability of computer and network hardware
has been improving for some time. One recent study
suggests that even with PCs, which are normally
considered the least reliable server alternative, it is
possible to achieve 99.5% availability and an MTBF of
about 35,000 hours. While this may change with
increasing heat stress in newer PCs, it is still a very
promising starting point.

On the other hand, there is no evidence that software
reliability is improving anywhere near as fast. Further,
virus attacks, which rely on defective software for their
effects, seem to be increasing at a rather startling rate.
This suggests that for the foreseeable future the limiting
factor for availability is likely to be the software.

Operations and Maintenance outages are typically the
result of human error and/or vendor design problems in
tools or procedures.

Environmental outages include all the sorts of issues
that are considered as part of a disaster recovery plan.
It is clear from looking at just a few of these items that
if they are not taken into account then environmental
issues will provide an upper bound on availability
significantly below 99%. On the other hand, with
careful planning most or all such outages can be
controlled.

It is worth noting that high availability is not an all or
nothing attribute. By addressing any of the normal
sources of system failure, the overall availability will
improve. Similarly, by improving the MTTR for any
source of failure, availability will improve. For most
businesses, the key to improving availability is
gathering the data which will cost justify the needed
system changes.

4. EXTREME AVAILABILITY

Extreme availability is the ultimate form of high
availability, when the desired goal is no outages at all,
because the perceived harm to the business is
immeasurably large. How does this differ from high
availability? To answer that, a comparison is useful.
In the United States, both the nuclear power industry
and nuclear powered naval vessels were expertly
designed with careful attention paid to fault tolerance.
Further, in both instances the systems are run by
thoroughly trained experts. Nonetheless, the nuclear
power industry has had several “incidents”, while no

such incidents have been encountered in the nuclear
navy.

4.1 Critical Components

In even the most carefully designed fault tolerant system,
there will be unexpected events. While such events
will be rare with careful planning, proper handling is
vital if outages are completely unacceptable.

In addition to the importance of people, most extreme
availability organizations pay close attention to a
number of other areas in order to achieve their results.
These areas include culture, fault tolerance, upgrade
procedures, testing, security, using mature software,
documentation, and simplicity – each of which is
covered in more detail in the following paragraphs.

The first common feature of extreme availability
businesses is that they have a strong culture of reliability,
which emphasizes such things as always taking extra
care and always being ready for a surprise. While
culture is always somewhat specific to the organization
if appears in, extreme availability cultures seem to share
certain traits.

As we have seen in earlier sections, there are a great
many possible sources of problems. Extreme
availability requires a fanatical attention to possible
single points of failure. In power, for example, the
building should have two power feeds, coming in on
opposite sides of the building, from separate power
substations. Each power feed should feed an
independent electrical distribution network inside the
building. The outside power should be backed up by
batteries, which in turn are backed up by generators,
with an on site fuel storage sufficient to last many days.
Good planning might even get multiple fuel delivery
contracts (with independent providers) which would
start a week or so before the fuel store would be
emptied.

One area where extreme availability organizations pay
particular attention to fault tolerance is in the upgrade
process for hardware and/or software. For upgrades,
extreme availability organizations use a gradual rollout
process of some sort, which allows the organization to
observe the upgrade in actual operation. Further, this
gradual rollout is coupled with a way to back out the
upgrade if problems occur. Note that being able to do
gradual rollout and immediate back-out (if necessary)
may well impose additional requirements on the design
for system redundancy.

Redundancy and fault tolerance can protect against
random errors, but they provide no protection against
systemic errors, such as a programming mistake or
misconfigured hardware. The only remedy for such
systemic problems is testing. Extreme availability
organizations take testing very seriously. Testing

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

296

periods are never shortened. Frequently there are
multiple independent testing organizations, and each of
them has the ability to stop deployment. Testing is
normally not under development.

In addition to systemic threats, there are the active
threats from people who for whatever reason want to
impact the system. Security precautions will include
both physical security (site, building and machine room)
and network security. When possible, the system
should be isolated from the Internet. If Internet access
is a key feature of the system, then layered protection
against penetration attacks are needed, as well as a
mechanism for handling denial of service attacks.

Security precautions are important, of course, but
beyond that extreme availability organizations typically
implement a higher than normal degree of isolation.
For example, development networks may be fully
independent of production networks. And of course
testing environments are fully independent of both
development and production.

Software is markedly different from hardware in the
shape of its failure curve over time. New software is
markedly more likely to fail than software which has
been used by many organizations over several years.
Many organizations recognize this effect by avoiding all
x.0 releases. Extreme availability organizations extend
that rule to try and avoid any commercial software until
it has a track record with other organizations.

As we have seen from earlier sections, high availability
relies on fault tolerance plus repair. Good monitoring
is key to understanding when there is an otherwise
transparent failure, and hence when repair is needed.
A correct view of what is happening in the system also
lowers the likelihood of an erroneous action being taken
by an operator.

Extreme availability requires an unusually complete set
of operational documentation. Why? People can be
single points of failure also. Worse, even if you have
several people cross trained you may find that the
backup is out sick while the primary is on vacation.

Simplicity is a watchword for most extreme availability
organizations. Simplicity means using the fewest
pieces possible for the function needed, because of the
impact on MTBF of additional components. It also
means using simple administrative interfaces, to lessen
the chance of error in an emergency.

4.2 Extreme Availability Summary

Extreme availability takes a high availability system as
a base, and adds operations personnel with good skills
handling emergencies and a strong culture of failure
avoidance.

While this may sound simple, it is not. Any culture
change is difficult, and the culture of high availability is
not common in the industry. This means that it is a
difficult adjustment for many.

5. CONTINUOUS AVAILABILITY

As the Internet becomes more significant to business,
increasing numbers of firms are looking at the issue of
making some or all their systems always available.
eBay, for example, attempts to make their systems
always available. For convenience, this type of
availability is called continuous availability. Given the
success of the various approaches above in increasing
availability, an obvious question is what impact the
additional constraint of continuous availability might
have.

At first blush, it would seem that there should be very
little impact produced by the continuous constraint.
After all, the most highly available systems are already
up almost all the time. But in fact there is a substantial
impact, and the reason is contained in one of the points
touched on earlier, namely the variations in the
definition of availability. Most very high availability
systems have availability defined in terms of scheduled
uptime. Or to put it another way, they do not include
scheduled downtime in their availability calculations.

5.1 Implications of No Scheduled Downtime

As we saw in the section on fault tolerance, to get the
highest levels of availability, it must be possible to
repair a system while the system continues to operate.
Given this, it seems it should be possible to achieve the
same levels of availability for continuously available
systems as for those that have some small degree of
scheduled downtime.

The reason this is not in fact the case is that manual
repair time is actually quite dangerous from a system
availability point of view. The data in this area is quite
hard to come by, and is also very fragmentary, but it
appears that outages are approximately 30 times more
likely during a repair session. This is of course a
function of human fallibility. What appears to be
happening is that, since repairs are a rare event, people
are much more likely to make mistakes at that time than
at other times. With scheduled downtime, such
mistakes can be caught and fixed without impacting
availability.

There is of course a considerable body of data on human
errors during emergencies. (A continuous availability
outage is naturally an emergency.) It is interesting to
speculate on whether well designed repair procedures,
which are protected against human error, could in fact
allow continuous availability to be a trivial byproduct of
high availability. Current hardware and software
upgrade and repair procedures do not allow this. As a

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

297

result, companies such as eBay, which aim for
continuous availability, have an availability target of
99.9%, while firms which aim for extreme availability
are likely to have a target of 99.999%.

5.2 Continuous Versus Extreme Availability

Despite the fact that continuous extreme availability
appears to be beyond the current state of the art,
continuous availability and extreme availability still
share a number of similarities.

Both continuous availability and extreme availability
take as their base careful attention to high availability
principles. Further, both rely on skilled operations
personnel working in a culture which emphasizes
availability.

The same cultural focus items which are important to
extreme availability tend to be important for continuous
availability, although there are a few differences which
will be detailed below.

While continuously available environments need the
same degree of fault tolerance as extreme availability
environments, there is an additional requirement. The
additional requirement is that repairs must be possible to
a running system. This is a design constraint on the
system, and it applies to all parts of the system. Notice
for example that this can imply a need to be able to
replace a power outlet without impacting any other
outlet on the same circuit.

Gradual rollouts are important for both extreme
availability and continuous availability, but for
continuous availability the rollout process (or rollback
process) must occur while the system is live. Once
again this is a design constraint, but in this case the
design constraint may impact such things as the
software communication protocols, since a gradual
rollout will create situations that could otherwise be
avoided.

Security needs are similar in extreme availability and
continuous availability, but for continuous availability it
will be necessary to have security upgrades rolled out
on a live system.

Monitoring is somewhat more complex for continuously
available systems, since monitoring will be needed for
the repair process also.

5.3 Continuous Availability Summary

At the moment, the very highest levels of availability
appear to be unachievable in a continuous availability
setting. Careful attention to the high availability
precepts, combined with an attentive workforce, can
achieve about 99.9% availability, or roughly 9 hours of
outage per year.

6. CONCLUSION

While great strides have been made in improving IT
hardware availability and in understanding the design
principles and operating procedures which will aid in
increasing availability, it remains true that high
availability is neither easy nor free.

Well designed redundant hardware operated by skilled
practitioners can achieve availability rates of 99.999%
for key periods each day, or 99.9% on a continuous
basis. Organizations which achieve such values spend
significantly more on their IT infrastructure than the
average commercial enterprise. Unfortunately as we
move towards greater degrees of electronic integration
between businesses, there will be a need to both close
the gap in continuous availability and a need to make
extreme availability feasible for businesses that do not
have a large team of highly skilled operators.

REFERENCES

[1] Avizienis, A., H. Kopetz, J. Laprie. Dependable
Computing and Fault-Tolerant Systems. New York:
Springer-Verlag, 1987.
[2] Bowen, J. P., M. Hinchey. High-Integrity System
Specification and Design. London: Springer-Verlag,
1999.
[3] Patterson, D., J. Hennessy. Computer Architecture: A
Quantitative Approach. San Mateo, California: Morgan
Kaufmann, 1990.
[4] Pradhan, D. Fault Tolerant Computing: Theory and
Techniques. 2 volumes. Englewood Cliffs, New Jersey:
Prentice Hall, 1986.
[5] Siewiorek, D., R. Swarz. Reliable Computer
Systems, Design and Evaluation. 2nd edition. Bedford,
Massachusetts: Digital Press, 1992.
 [6] Toigo, J. W. Disaster Recovery Planning:Preparing
for the Unthinkable. 3rd edition. Upper Saddle River,
New Jersey: Prentice Hall, 2003.
 [7] Marcus, E.; H. Stern. Blueprints for High
Availability. New York: John Wiley and Sons, 2000.
[8] Gray, J., A. Reuter. Transaction Processing:
Concepts and Techniques. San Francisco, California:
Morgan Kaufmann Publishers, 1993.

