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ABSTRACT 

High availability has become increasingly important to businesses with the advent of the Web and various associated 
e-commerce services.  This paper describes the key attributes of the very highest availability systems. Such systems 
and their associated support environments are qualitatively different than other systems, even other high availability 
systems; for the purposes of this paper these systems at the current limit of possible availability are termed extreme 
availability systems. 
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1. INTRODUCTION 
 
The basic requirements that any trading floor 
application for the New York Stock Exchange (NYSE) 
needs to meet are fairly easy to define.  The system 
needs to be extremely reliable, highly available, very 
fast, and highly scalable.  While these requirements are 
not unusual per se, the levels needed by the NYSE are 
well beyond what most commercial off-the-shelf 
software provides.  The NYSE is one example of an 
extreme availability environment, where no outage 
during trading hours is acceptable. 
 
Historically, extreme availability has been a specialty 
area, of interest mostly for space-craft systems and 
those systems where failure would cause significant 
destruction and loss of life.  The usual techniques for 
improving availability, such as redundancy and 
independent backup systems, have been used with great 
success in such systems.   
 
Commercial systems are extremely cost sensitive, 
although the degree of sensitivity varies by industry.  
Most businesses think about availability in much the 
same way that they think of disaster recovery costs – 
they determine the cost per hour (or sometimes per 
minute) of an outage, and then take appropriate steps to 
mitigate outages using the outage cost per hour as a cap 
on potential mitigation expenses.  One corollary of this 
approach is that when business critical systems are 
computerized the willingness to spend to increase 
availability goes up sharply, since the expense cap 
becomes tied to the entire business revenue stream. 
 
Given this background, it should come as no surprise 
that e-commerce is causing many companies to become 
much more concerned about high availability, and in 
some cases businesses are starting to look seriously at 
what is required to achieve extreme availability.  At 
the moment, financial companies are most interested in 
extreme availability, partly because they are often the 
most advanced in computerizing their business 

processes and partly because they tend to have the 
highest cost per hour for outages.  It appears, however, 
that a secondary effect of the shift to e-commerce is that 
high availability is becoming a critical competitive 
attribute – and that extreme availability may in turn start 
becoming a competitive differentiator.  
 
There are a few key ideas which appear over and over 
when considering the various aspects of availability.  
They are listed here both as an introduction to the 
concepts and as a convenient reference point. 
 
MTBF stands for mean time before failure, or 
sometimes mean time between failures.  These two 
phrases are equivalent only for those cases where the 
curve which describes the failure probability over time 
is a negative exponential curve, but as it happens such a 
curve is frequently a good fit for hardware failures, 
particularly for electronic or electrical equipment.  In 
summary, MTBF is a measure of how long something is 
likely to stay up.  Generally MTBF values are 
specified as some number of months or years. 
 
MTTR stands for mean time to repair.  It is a measure 
of how long it takes to fix something once it breaks.  
Note that the repair time includes whatever time it takes 
to diagnose the problem, acquire the repair components, 
pull the failing component, do whatever repair is needed, 
and reinstall the now working component.   
 
SPOF stands for single point of failure.  A single point 
of failure is a system or environmental component 
which, when it fails, takes down the entire system.  
The significance of a SPOF is that the reliability of that 
component will be an upper bound on the overall 
reliability of the system.  In general, any SPOF is a 
weak link in a high availability chain. 
 
This paper provides a background in the general 
approaches and concerns for very high availability 
systems.  While these general approaches are well 
known in certain areas, it is useful to revisit them in the 
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context of distributed e-commerce systems to 
understand what aspects are most important in that 
environment.  To do this, the paper follows the general 
overview with an overview of the techniques and 
approaches used by those organizations which are most 
aggressively pursuing extreme availability.  Finally, 
some general information is given from case studies of 
such extreme availability systems, to indicate what the 
limits of the commercial state of the art are today. 

 
2. FAULT TOLERANCE 

 
Fault tolerance is the study of how to design systems or 
subsystems so that they continue to operate correctly in 
the presence of components which fail.  Normally the 
measure for a successful design is an increase in the 
overall system MTBF.  There are some curious tidbits 
from this area of study, such as the fact that redundancy 
can actually decrease system MTBF.  To understand 
how and why such things can happen, it is necessary to 
understand how component MTBF can impact system 
MTBF. [1] [2] 
 
2.1 MTBF – Underlying Assumptions 
 
Large systems are composed of many parts, and to 
compute the MTBF for such large systems we need a 
way of composing the MTBFs for the parts.  In 
general, 

P(exactly one of E1 and E2 occurs)  
= P(E1) + P(E2) – (P(E1) * P(E2))  (1) 

 
Note that for sufficiently small probabilities, the product 
term will be quite small with respect to the overall value, 
and hence we can approximate the probability that 
exactly one of E1 and E2 occurs with the sum of the 
probabilities of E1 and E2.  (Since for fault tolerance 
we are dealing with failure probabilities, and most 
failure probabilities for IT systems are less than 5%, this 
simplification is useful and fairly accurate.  Note that 
5% * 5% is 0.25%, while the sum is 10%, and that 
further the accuracy of the approximation improves as 
the probabilities get smaller.)  
 
Because we are interested in the expected life span 
(Mean Time Before Failure), rather than the probability 
of failure in a given time span, we must find a new 
function of P(E) which yields this information.  For 
random probability distributions this can be quite 
difficult, but it turns out that a useful approximation is 
to assume that the probability is memory-less, which 
means that the probability of failing in the next time 
interval is independent of how long it has already been 
in service.  With that assumption, we get 

MTBF(E) = 1/P(E)        (2) 
 
 It turns out that many IT devices actually exhibit a 
bathtub curve probability, with a high infant mortality 
rate and a high wear out rate joined by a long period of 
essentially constant and low mortality.  Manufacturers 

can convert such devices into memory-less devices by 
using a burn-in period to eliminate infant mortality, and 
setting the nominal end of life (or end of warranty) prior 
to the rise due to end of life mortality. 
 
For a device with a 5% probability of failure in any 
given month, we will therefore get a 20 month MTBF.  
Most systems are composed of many modules.  If the 
modules fail independently, we can compute the 
probability of the system failing.  In general, for any 
set of N identical parts the MTBF for the entire set is 
1/N times the MTBF for one such part. 
 
2.2 Failure Modes 
 
Since we are interested in fault tolerance, it is natural to 
ask about the failure modes of the various devices we 
are considering.  Unfortunately, this question is 
extremely hard to answer with complete accuracy for 
most devices.  Further, the answer to such a question is 
tightly tied to the exact technologies used, so even 
having the answer for a given device doesn’t necessarily 
help in determining the answer for another similar but 
not identical device. 
 
There are a few general principles which can help 
increase fault tolerance.  The first such principle deals 
with what are commonly called soft, or transitory errors.  
Soft errors have the property that the probability of 
occurrence is independent of the work being done, and 
further they do not always occur even when the same 
work is done.  There can be various causes for soft 
errors, but in terms of fault tolerance the ultimate goal 
with soft errors is always the same – to mask the 
occurrence of the error in such a way that there is no 
immediate fault generated.  The solution in these cases 
always comes down to redundancy, and typically it is 
implemented via error correcting codes.  While ECC is 
a large and complex field of study, it is also sufficiently 
well understood that such codes are in widespread use 
by device manufacturers to control transitory errors.  
Such codes are used in all disk drives, and on almost all 
communication channels. 
 
Workload independent hard errors (also known as 
non-transitory or permanent) can also be handled by 
manufacturers by using redundancy, but in this case the 
redundancy needed is additional hardware. 
 
Unfortunately there are several additional classes of 
errors which do not easily lend themselves to general 
solutions.  Workload dependent errors, such as the 
floating point problem in Intel processors, are one major 
example.  Additionally, many devices have partial 
failure modes, where things are neither working 
completely nor failed completely.  While most 
manufacturers attempt to identify such problems with 
testing, even the most rigorous testing will occasionally 
miss such problems. 
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There is one final general approach to dealing with 
failure which can be helpful, both in the real world and 
for theoretical analysis of fault tolerance.  This 
approach is called failstop, and it works by forcing all 
faults into the same terminal state, namely the stopped 
state.  This approach significantly aids in the design 
and operation of fault tolerant systems, and as will be 
seen below it also aids in the analysis of the behavior of 
such systems. 
 
2.3 Fault Tolerance Approaches 
 
In general, fault tolerance requires two things, namely a 
way of detecting failure and enough redundancy to 
allow the failure to be overcome. 
 
Under certain conditions, it is possible to turn any 
device into a failstop device.  The simplest way to do 
that with non-failstop components is to duplicate the 
device, and then use some kind of comparator to see if 
the outputs of the two copies of the device agree.  If 
the outputs agree, the device continues to work.  If the 
outputs disagree, the device stops.  For this process to 
be feasible, of course, it must be possible to build the 
needed output comparator.  The major drawback to this 
simple form of failstop creation is the impact on MTBF.  
Because there are two copies of the basic device, the 
failstop device has an MTBF which is no more than ½ 
the MTBF of the original device.  This can of course 
be mitigated by using more copies of the device; with 
three copies (and a more sophisticated comparator) the 
failstop device has an MTBF of 5/6 of the MTBF of the 
original device.  (An additional advantage of triplex or 
higher redundancy arises if soft errors predominate in 
the failure modes for the base components.  In that 
case the comparison process will completely eliminate 
the soft errors, and significantly boost the overall  
MTBF.) 
 
Although building failstop devices doesn’t sound 
obviously attractive at this point, things become better 
once higher layers are built on top of such failstop 
devices.  With non-failstop components, the device 
must necessarily fail as soon as there is no longer a 
majority of devices working.  With failstop 
components, the device can continue to work as long as 
at least one of the components is working, since each 
component will either work correctly or stop.  While 
this won’t ease the redundancy cost of the additional 
hardware, it has a substantial impact on MTBF.  With a 
duplex device, the overall MTBF moves from ½ the 
component MTBF to 1.5 times the component MTBF.  
With a triplex device, the overall MTBF moves from 5/6 
the component MTBF to 11/6 times the component 
MTBF.   
 
The most interesting advantage of building with failstop 
components only appears with one additional 
assumption.  If it is possible to replace failed 
components without taking down the entire device, and 

synchronize the new component if necessary, then the 
MTBF calculations change significantly.  The device 
will fail if all but one of the components are unavailable, 
and then the remaining component fails.  This yields 
the following equation for a device made with n copies 
of a failstop component: 
 
The MTBF for the n component device with repair is: 

MTBF/n * (MTBF/MTTR)n-1    (3) 
or rewriting slightly 

MTBFn / (n * (MTTR)n-1 )     (4) 
 
Using our usual 95% reliable components, and 
assuming that repair takes a full day, we find that the 
MTBF for a duplex device is made from 20 month 
MTBF components is approximately 1000 months, or 
roughly 80 years.  Using the same components, a 
triplex device will provide an MTBF of approximately 
80,000 months, or roughly 6500 years. 
 
Note that using a comparator and duplex or triplex (or 
more) is not the only way to provide fault tolerance.  
The key to fault tolerance is spare hardware and some 
way to detect failure, with the spare hardware used to 
correct the detected fault.  As an example of another 
alternative approach, consider RAID 5 disk drives.  
What is done for RAID 5 is to use a redundant coding 
on the, with the extra drives needed by RAID 5 used to 
increase storage to hold the extra bits required by the 
redundant encoding. [3] [4] [5] 
 
2.4 The Bad News 
 
From the preceding discussion, it is clear that whenever 
we have workload independent failure modes, either 
soft or hard, and devices which are memory-less in their 
failure mode, which are relatively reliable and easy to 
repair, it is possible to build fault tolerant devices with 
very high MTBF. 
 
An obvious question is then what large system 
components do not exhibit the needed properties.  And 
unfortunately there is one key area which does not fit 
the picture – software.  Even worse, the characteristic 
which is least compatible with the assumptions is the 
primary assumption behind much of the fault tolerance 
work, namely the assumption that most failure modes 
are workload independent.   
 
When most of the failures are a function of the 
workload done, no voting scheme which uses multiple 
copies of the same software increases reliability. 
 
As a practical matter, most people designing systems for 
high availability deal with the issue of software faults 
by relying on one of the demonstrated advantages of 
software, namely that the defect rate decreases with use.  
Thus, it is common for systems with high sensitivity to 
failure to prefer software which has been in wide or 
long term use elsewhere to take advantage of the 
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improved defect rate.  Additionally, there is likely to 
be a much greater emphasis on testing for such systems. 
 
One additional area of workload dependent failure 
warrants special attention currently.  This is the area of 
security issues and faults.  While there have been 
security issues and bugs since the earliest days of 
computing, even in systems which were designed from 
the ground up with security in mind, the Internet has 
increased the significance of such issues.  The problem 
is that the Internet makes networked computers more 
widely available.  While this is a good thing in terms 
of increasing the usefulness of such computer systems, 
it also allows those with harmful intentions access to the 
systems.  These people will typically search out 
security faults of various types, in order to exploit the 
weaknesses for their own purposes. 
 
2.5 Fault Tolerance Summary 
 
Standard failure analysis has yielded tremendous gains 
in hardware component reliability (disk drives have 
gone from MTBF of hundreds of hours to MTBF of tens 
of thousands of hours over the last few decades for 
instance).  Further, the work on high availability 
systems has yielded a number of highly effective 
techniques for composing the improved components 
into larger systems which are even more reliable (one 
notable innovation being RAID 5). 
 
The approaches used for hardware fault tolerance have 
not been noticeably successful in providing software 
fault tolerance.  Curiously enough, until recently this 
has not been a major issue in the design of highly 
available systems, largely because the software failure 
rate was sufficiently low that other modes of failure 
dominated in the overall failure modes.  Improvements 
in hardware reliability, coupled with a trend toward 
attacks on systems via software defects, are likely to 
increase the urgency for solutions in this area going 
forward. 
 

3. HIGH AVAILABILITY 
 
High availability is yet another way of looking at the 
issue of IT system faults and the key ideas of MTBF and 
MTTR.  In the case of high availability, the focus is on 
the end user experience.  Thus, high availability is 
normally expressed in terms of per cent availability of 
the process or function supplied by the associated IT 
system.  Note that availability will be increased by 
either increasing MTBF or by reducing MTTR 
. 
3.1 Availability and Target Percentages 
 
While availability is normally expressed in percentage 
terms, since those percentages are frequently over 90%, 
it can be useful to convert the percentages into minutes 
of downtime per year.  Thus 99.9% availability is 
about an hour a year of downtime, while 99.999% 

availability is about 5 minutes a year of downtime. 
 
While this is easy enough to understand, there is a 
complication in how availability can be calculated 
which can impact the downtime numbers above.  In 
computing downtime, some people exclude planned 
downtime (for things like upgrades or hardware 
maintenance), and some don’t.   
 
The mathematical calculations above are interesting.   
More interesting is the question of what end users 
should really expect.  In general this is a hard question, 
which depends on many details of the actual system 
under consideration, but the following quote seems 
pertinent. 
 
The availability specification for the Windows NT server 
is about 99.5 percent.  UNIX has something like 99.7 
percent availability and OS/390 has 99.999.  When you 
think about it, that means your unplanned downtime on 
an NT server will average about 50 hours per year.  
With UNIX, the number is around 26 hours per year.  
And, with OS/390, you are looking at 5 minutes of 
unplanned downtime per year.  Considering the cost to 
companies for an hour of unplanned downtime -- 
$100,000 for a retail operation, $6 million or more for a 
brokerage – you can see that the drive to client/server is 
a costly one. [6] 

 
3.2 Improving Availability 
 
Improving availability is not an all or nothing process.  
It is possible to improve the availability of individual 
subsystems.  This is fortunate, since the cost of 
applying high availability principles to entire IT systems 
will increase the cost of the system by a factor of 2 to 4, 
depending on system details. 
 
The obvious place to start in improving availability is 
wherever outages are causing the most pain.  For each 
such pain point, alternatives can be developed using the 
various techniques which have been outlined above.  
Then the cost of implementing the various alternatives 
can be determined, and weighed against the business 
benefit to be gained.  As an example, let us assume 
disk drive failures are causing a significant productivity 
loss.  A few alternatives to increase availability are 
backups (which can significantly reduce MTTR), raid 
arrays, various kinds of networked storage (SAN or 
NAS), and of course using a more reliable brand of disk 
drive.  The disk drive business has grown sufficiently 
competitive that all the major vendors offer roughly 
equivalent MTBF ratings, so that alternative is unlikely 
to bring useful gains in reliability.  Backups are likely 
the cheapest alternative, so if an hours long outage for 
restoration (and possible loss of any work done since 
the last backup) is acceptable, this might be a 
worthwhile alternative.  Raid arrays will entail the cost 
of a new raid controller and additional disk drives for 
the particular raid mode chosen, but will provide 
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significantly increased MTBF, and in some cases lower 
MTTR also.  Networked storage will entail acquiring 
the appropriate storage boxes, as well as some increased 
administrative overhead.  Note further that both 
networked storage solutions and backup solutions can 
be shared among multiple systems, so even determining 
the cost of an alternative is specific to the business 
making the choice.  Given the multitude of technically 
feasible solutions, business requirements and tradeoffs 
dominate in determining the exact nature and level of 
high availability appropriate for any given IT system. 
 
Any business with a large number of similar systems 
can usually determine fairly easily which components 
most commonly cause outages.  For smaller businesses, 
or for unusual configurations, it will be necessary to rely 
on outside data to determine the components most likely 
to cause problems. 
 
One final point may be useful for any business working 
on improving availability.  Initially it is easy to look at 
overall statistics on business wide outages and 
determine which areas need attention. However, once 
availability improves enough, even a large business is 
likely to find that the weekly variation in outage causes 
starts to disguise the underlying trends, and make it hard 
to gain further improvement.  The exact point at which 
this occurs is largely a function of the size of the 
business, but in general this sort of problem will start to 
appear around 99.5% availability.  When this starts to 
happen, it will likely be useful to shift to considering 
not overall outage statistics, but rather statistics on the 
longest outages.  Normally at this point reducing the 
length of the longest outages will provide a significant 
boost to overall availability. [7] 
 
3.3 An Overview of System Failures 
 
As we have seen above, having information on what 
kinds of system or component failures to expect makes 
the process of improving availability much easier.  
This makes published data summarizing all failures, by 
source of failure, for a large number of systems of 
considerable value.  There are, however, two problems 
with such data. 
 
The first problem is that there are almost no such studies.  
The only published work we are aware of that cover all 
system failures for a large number of systems is the 
work covering an analysis done by the Japanese 
Information Processing Development Corporation 
(JIPDEC) in the mid 1980’s.  This study surveyed the 
outages reported by 1,383 businesses in 1985, and 
covers 7,517 outages with an average outage duration of 
about 90 minutes.  This yields an overall MTBF for the 
systems of about ten weeks, and an availability of 
99.91%. [8] 
 
The second problem is that the data is very dependent 
on the technologies used in creating the system.  While 

there are specialists who can determine the expected 
reliability of a system, using detailed calculations on all 
the various components of the system, this work is quite 
hard and expensive – normally it is easier to simply 
observe actual performance.  This is particularly true 
since one of the key components of the system, the 
software (operating system, middleware, and 
application) typically does not come with a rigorous 
MTBF guarantee. 
 
Despite these two caveats, it is interesting to see what 
has been found, and combine it with the technology 
trends in the intervening years to provide some guidance 
on what areas will most likely benefit from improved 
availability efforts. 
 
In the mid-1980’s conventional wisdom was that disks 
were the major concern for reliability, because they 
were mechanical.  This was borne out by disk MTBF 
values of about 10,000 hours, although some vendors 
were producing disks which were both significantly 
more expensive and more reliable.  Although disks 
have remained mechanical, they now exhibit advertised 
MTBF values of 50,000 hours, and actual experience 
indicates MTBF values of between 5 and 10 years.  
While not all the MTBF news is good, as will be seen in 
the next section, in general computer hardware has 
become significantly more reliable, and requires 
significantly less maintenance than was true during the 
JIPDEC study. 
 
But is improved hardware and maintenance enough?  
Note that while the MTBF with 1980’s hardware and 
software was 10 weeks, even with perfect vendor 
hardware and software the JIPDEC average MTBF 
would only rise to 4 months.  With an average repair 
time of 90 minutes, this would correspond to an 
availability of only about 99.95%.  Vendor product 
improvements are clearly important, but also clearly not 
enough to achieve the high availability goals. 

3.4 External Factors 
 
It is useful to consider the impact of WAN connectivity 
and the power network, which are typically not under 
the direct control of the business attempting to provide a 
high availability system.  In North America, 
communication line suppliers will provide service 
guarantees of 95% error free seconds, bit error rates of 
no more than 1 error per million bits, and 99.7% 
availability.  Redundant message encoding and 
duplexing transmissions via independent paths can mask 
most transient failures, but 99.7% availability is 
significantly lower than even a PC server.  Further, a 
1998 study by RTO West, a Canadian power supplier 
indicated that for their system power was available at 
the point of delivery only about 98% of the time.  Once 
again, this sort of low external availability can be 
overcome with careful system design. 
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3.5 Fault Tolerance Summary 
 
There are five normal sources of outage: 1) Hardware; 2) 
Software; 3) Operations; 4) Maintenance; and 5) 
Environment. (Environment includes all items which 
are not considered part of the system of interest, such as 
the building(s) the system sits in or the power or 
machine room cooling systems.) 
 
The base reliability of computer and network hardware 
has been improving for some time.  One recent study 
suggests that even with PCs, which are normally 
considered the least reliable server alternative, it is 
possible to achieve 99.5% availability and an MTBF of 
about 35,000 hours.  While this may change with 
increasing heat stress in newer PCs, it is still a very 
promising starting point. 
 
On the other hand, there is no evidence that software 
reliability is improving anywhere near as fast.  Further, 
virus attacks, which rely on defective software for their 
effects, seem to be increasing at a rather startling rate.  
This suggests that for the foreseeable future the limiting 
factor for availability is likely to be the software. 
 
Operations and Maintenance outages are typically the 
result of human error and/or vendor design problems in 
tools or procedures. 
 
Environmental outages include all the sorts of issues 
that are considered as part of a disaster recovery plan.  
It is clear from looking at just a few of these items that 
if they are not taken into account then environmental 
issues will provide an upper bound on availability 
significantly below 99%.  On the other hand, with 
careful planning most or all such outages can be 
controlled. 
 
It is worth noting that high availability is not an all or 
nothing attribute.  By addressing any of the normal 
sources of system failure, the overall availability will 
improve.  Similarly, by improving the MTTR for any 
source of failure, availability will improve.  For most 
businesses, the key to improving availability is 
gathering the data which will cost justify the needed 
system changes. 
 

4. EXTREME AVAILABILITY 
 
Extreme availability is the ultimate form of high 
availability, when the desired goal is no outages at all, 
because the perceived harm to the business is 
immeasurably large.  How does this differ from high 
availability?  To answer that, a comparison is useful.  
In the United States, both the nuclear power industry 
and nuclear powered naval vessels were expertly 
designed with careful attention paid to fault tolerance.  
Further, in both instances the systems are run by 
thoroughly trained experts.  Nonetheless, the nuclear 
power industry has had several “incidents”, while no 

such incidents have been encountered in the nuclear 
navy. 

4.1 Critical Components 
 
In even the most carefully designed fault tolerant system, 
there will be unexpected events.  While such events 
will be rare with careful planning, proper handling is 
vital if outages are completely unacceptable. 
 
In addition to the importance of people, most extreme 
availability organizations pay close attention to a 
number of other areas in order to achieve their results.  
These areas include culture, fault tolerance, upgrade 
procedures, testing, security, using mature software, 
documentation, and simplicity – each of which is 
covered in more detail in the following paragraphs. 
 
The first common feature of extreme availability 
businesses is that they have a strong culture of reliability, 
which emphasizes such things as always taking extra 
care and always being ready for a surprise.  While 
culture is always somewhat specific to the organization 
if appears in, extreme availability cultures seem to share 
certain traits.   
 
As we have seen in earlier sections, there are a great 
many possible sources of problems.  Extreme 
availability requires a fanatical attention to possible 
single points of failure.  In power, for example, the 
building should have two power feeds, coming in on 
opposite sides of the building, from separate power 
substations.  Each power feed should feed an 
independent electrical distribution network inside the 
building.  The outside power should be backed up by 
batteries, which in turn are backed up by generators, 
with an on site fuel storage sufficient to last many days.  
Good planning might even get multiple fuel delivery 
contracts (with independent providers) which would 
start a week or so before the fuel store would be 
emptied. 
 
One area where extreme availability organizations pay 
particular attention to fault tolerance is in the upgrade 
process for hardware and/or software.  For upgrades, 
extreme availability organizations use a gradual rollout 
process of some sort, which allows the organization to 
observe the upgrade in actual operation.  Further, this 
gradual rollout is coupled with a way to back out the 
upgrade if problems occur.  Note that being able to do 
gradual rollout and immediate back-out (if necessary) 
may well impose additional requirements on the design 
for system redundancy.  
 
Redundancy and fault tolerance can protect against 
random errors, but they provide no protection against 
systemic errors, such as a programming mistake or 
misconfigured hardware.  The only remedy for such 
systemic problems is testing.  Extreme availability 
organizations take testing very seriously.  Testing 
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periods are never shortened.  Frequently there are 
multiple independent testing organizations, and each of 
them has the ability to stop deployment.  Testing is 
normally not under development. 
 
In addition to systemic threats, there are the active 
threats from people who for whatever reason want to 
impact the system.  Security precautions will include 
both physical security (site, building and machine room) 
and network security.  When possible, the system 
should be isolated from the Internet.  If Internet access 
is a key feature of the system, then layered protection 
against penetration attacks are needed, as well as a 
mechanism for handling denial of service attacks. 
 
Security precautions are important, of course, but 
beyond that extreme availability organizations typically 
implement a higher than normal degree of isolation.  
For example, development networks may be fully 
independent of production networks.  And of course 
testing environments are fully independent of both 
development and production. 
 
Software is markedly different from hardware in the 
shape of its failure curve over time.  New software is 
markedly more likely to fail than software which has 
been used by many organizations over several years.  
Many organizations recognize this effect by avoiding all 
x.0 releases.  Extreme availability organizations extend 
that rule to try and avoid any commercial software until 
it has a track record with other organizations. 
 
As we have seen from earlier sections, high availability 
relies on fault tolerance plus repair.  Good monitoring 
is key to understanding when there is an otherwise 
transparent failure, and hence when repair is needed.  
A correct view of what is happening in the system also 
lowers the likelihood of an erroneous action being taken 
by an operator. 
 
Extreme availability requires an unusually complete set 
of operational documentation.  Why?  People can be 
single points of failure also.  Worse, even if you have 
several people cross trained you may find that the 
backup is out sick while the primary is on vacation. 
 
Simplicity is a watchword for most extreme availability 
organizations.  Simplicity means using the fewest 
pieces possible for the function needed, because of the 
impact on MTBF of additional components.  It also 
means using simple administrative interfaces, to lessen 
the chance of error in an emergency.  
 
4.2 Extreme Availability Summary 
 
Extreme availability takes a high availability system as 
a base, and adds operations personnel with good skills 
handling emergencies and a strong culture of failure 
avoidance. 
 

While this may sound simple, it is not.  Any culture 
change is difficult, and the culture of high availability is 
not common in the industry.  This means that it is a 
difficult adjustment for many. 
 

5. CONTINUOUS AVAILABILITY 
 
As the Internet becomes more significant to business, 
increasing numbers of firms are looking at the issue of 
making some or all their systems always available.  
eBay, for example, attempts to make their systems 
always available.  For convenience, this type of 
availability is called continuous availability.  Given the 
success of the various approaches above in increasing 
availability, an obvious question is what impact the 
additional constraint of continuous availability might 
have. 
 
At first blush, it would seem that there should be very 
little impact produced by the continuous constraint.  
After all, the most highly available systems are already 
up almost all the time.  But in fact there is a substantial 
impact, and the reason is contained in one of the points 
touched on earlier, namely the variations in the 
definition of availability.  Most very high availability 
systems have availability defined in terms of scheduled 
uptime.  Or to put it another way, they do not include 
scheduled downtime in their availability calculations. 
 
5.1 Implications of No Scheduled Downtime 
 
As we saw in the section on fault tolerance, to get the 
highest levels of availability, it must be possible to 
repair a system while the system continues to operate.  
Given this, it seems it should be possible to achieve the 
same levels of availability for continuously available 
systems as for those that have some small degree of 
scheduled downtime. 
 
The reason this is not in fact the case is that manual 
repair time is actually quite dangerous from a system 
availability point of view.  The data in this area is quite 
hard to come by, and is also very fragmentary, but it 
appears that outages are approximately 30 times more 
likely during a repair session.  This is of course a 
function of human fallibility.  What appears to be 
happening is that, since repairs are a rare event, people 
are much more likely to make mistakes at that time than 
at other times.  With scheduled downtime, such 
mistakes can be caught and fixed without impacting 
availability. 
 
There is of course a considerable body of data on human 
errors during emergencies.  (A continuous availability 
outage is naturally an emergency.)  It is interesting to 
speculate on whether well designed repair procedures, 
which are protected against human error, could in fact 
allow continuous availability to be a trivial byproduct of 
high availability.  Current hardware and software 
upgrade and repair procedures do not allow this.  As a 
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result, companies such as eBay, which aim for 
continuous availability, have an availability target of 
99.9%, while firms which aim for extreme availability 
are likely to have a target of 99.999%. 
 
5.2 Continuous Versus Extreme Availability 
 
Despite the fact that continuous extreme availability 
appears to be beyond the current state of the art, 
continuous availability and extreme availability still 
share a number of similarities. 
 
Both continuous availability and extreme availability 
take as their base careful attention to high availability 
principles.  Further, both rely on skilled operations 
personnel working in a culture which emphasizes 
availability. 
 
The same cultural focus items which are important to 
extreme availability tend to be important for continuous 
availability, although there are a few differences which 
will be detailed below. 
 
While continuously available environments need the 
same degree of fault tolerance as extreme availability 
environments, there is an additional requirement.  The 
additional requirement is that repairs must be possible to 
a running system.  This is a design constraint on the 
system, and it applies to all parts of the system.  Notice 
for example that this can imply a need to be able to 
replace a power outlet without impacting any other 
outlet on the same circuit. 
 
Gradual rollouts are important for both extreme 
availability and continuous availability, but for 
continuous availability the rollout process (or rollback 
process) must occur while the system is live.  Once 
again this is a design constraint, but in this case the 
design constraint may impact such things as the 
software communication protocols, since a gradual 
rollout will create situations that could otherwise be 
avoided. 
 
Security needs are similar in extreme availability and 
continuous availability, but for continuous availability it 
will be necessary to have security upgrades rolled out 
on a live system. 
 
Monitoring is somewhat more complex for continuously 
available systems, since monitoring will be needed for 
the repair process also. 
 

5.3 Continuous Availability Summary 
 
At the moment, the very highest levels of availability 
appear to be unachievable in a continuous availability 
setting.  Careful attention to the high availability 
precepts, combined with an attentive workforce, can 
achieve about 99.9% availability, or roughly 9 hours of 
outage per year. 
 

6. CONCLUSION 
 
While great strides have been made in improving IT 
hardware availability and in understanding the design 
principles and operating procedures which will aid in 
increasing availability, it remains true that high 
availability is neither easy nor free. 
 
Well designed redundant hardware operated by skilled 
practitioners can achieve availability rates of 99.999% 
for key periods each day, or 99.9% on a continuous 
basis.  Organizations which achieve such values spend 
significantly more on their IT infrastructure than the 
average commercial enterprise.  Unfortunately as we 
move towards greater degrees of electronic integration 
between businesses, there will be a need to both close 
the gap in continuous availability and a need to make 
extreme availability feasible for businesses that do not 
have a large team of highly skilled operators.  
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