
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 

 

435 

Rationality Validation of Business Process Model by Simulation Method 
 

Ke Ning1, Yuliu Chen2, David O'Sullivan1 

1 Digital Enterprise Research Institute, National University of Ireland, Galway, Ireland 
2 Department of Automation, Tsinghua University, Beijing, 100084, China 

Ke.ning@deri.org 
 

ABSTRACT 

Business process modeling has been adopted widely. Due to the complexity, it is very hard to validate the rationality of 
process models. The existing validation methods can only detect structural conflicts in process models. It is also very 
important to validate those objects related to the processes. This paper presents a rationality validation method which is 
based on discrete event simulation technology. It can detect three logic mistakes from business process models: 
structural deadlock, lack of synchronization and objects not matched each other. This method has extended the scope of 
rationality validation, and also enriches the contents that can be validated. 
 
Keywords: Business Process Models, Rationality Validation, Simulation 
 

1. INTRODUCTION 
 
Business process model is kind of description of 
business process. By using model, we are able to 
analyze the performance of process, to guide the 
implementation of process, to monitor the execution of 
process, to enable the management of process. Due to 
the complexity of business process, whether describing 
AS-IS models or designing TO-BE models, it is possible 
to make kinds of mistakes about rationality. It is 
nonsense to analyze the performance of a process based 
on the wrong models, and implementing a wrong model 
may bring huge losing to an enterprise. Therefore, more 
and more attention has been pay to the validation of 
business process model. 
 
Validation of a business process model is not so easy. If 
the structure and size are not limited, it will be an NP 
hard problem to validating a process model [1]. Thus 
many efforts have been pay to how to improve the 
efficiency of validation algorithm, hoping to get high 
efficiency through simplifying model or adding restrict 
conditions. H. Lin [2] gave a graphic reduction method to 
validate the mistakes of structural deadlock and lack of 
synchronization of a process based on his process 
modeling language. W.M.P. [3] defined a WF-NET based 
on Petri-Net, then used Petri-Net theories to validate the 
rationality of the structure of a process. These methods 
have gain efficiency of multinomial time complexity. 
But problems raised here: Firstly, there are rigorous 
conditions for the algorithms, the method of H. Lin can 
validate only some specified simple structure of process, 
method based on Petri-Net required that the process 
model must be a free-choice net. Secondly, these 
methods can only find some logic problem of process 
structure, which is only a little scope of process 
rationality validation. These methods may have 
theoretical values, but they are not the practical ones for 
the real business process.  
 

To support validation of real business process, we have 
gone on a different way. We haven’t cared too much 
about efficiency of algorithm, but have paid more 
attention to enlarge the scope of contents of validation, 
and to improve the practicability. We have developed a 
validation method based on simulation technology in 
our eIDEF3 business process model. This method can 
detect three logic mistakes in business process: 
structural deadlock, lack of synchronization and objects 
not matched each other. Compared to the existing 
methods, it is not so effective, but enough for most 
business process. And most important, it has extended 
the scope of rationality validation, and also enriches the 
contents that can be validated. 
 

2. EIDEF3 PROCESS MODELING METHOD 
 
IDEF3 is one of the IDEF series methods. It is used to 
capture and describe business process. It can support 
communication and comprehension between domain 
experts and modelers, and has been used widely in 
industry. To increase its description ability, support 
simulation analysis, enlarge model usability, we have 
extended IDEF3 to eIDEF3 (extended IDEF3), which 
can describe objects involved in process in a formal way. 
We have developed a software tool GEM-EASY 
IDEF3© based on this method. Figure 1 is the basic 
syntactical elements of eIDEF3.  
 

 
Figure 1 basic syntactical elements of eIDEF3 

 



The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 

 

436 

eIDEF3 provides two type basic flow diagram to 
describe a process scenario (As shown in Figure 2): One 
is Control Flow diagram, the other is Object Flow 
Diagram. 
 

 
Figure 2 Basic Flow Diagram in eIDEF3 

 
Most existing process modeling methods have little 
description of object flow information; Or these 
information are depicted in control flow diagram, which 
mage the diagram so complicated to read. In eIDEF3, 
we distinguish object flow diagram and control flow 
diagram, and relate them through UOB. On one hand, 
this method obeys the rule of simplification to decrease 
the difficulty of modeling; On the other hand, it can 
capture the dynamic information of objects, so that 
exact analysis of process performance can be achieved.  
To obtain more information about eIDEF3, please refer 
to literature [4][5].  
 

3. DEFINITION OF PROCESS RATIONALITY 
BASED ON PIS 

 
Limited by its algorithm, most existing validation 
methods define process rationality on the level of 
modeling methods. For example, in order to use 
Petri-Net to validate the soundness property of 
workflow models, Aalst [6] defined process rationality 
from state transition, active, and bounded of Petri-Net; 
Wasim Sadiq [7] defined process rationality from flow 
chart in order to validate structural conflict in process. 
Therefore, these definitions are very different in 
presentation. However, the rationality of a process 
should be decided from the process itself. It should not 
be concerned with modeling method. Thus, such 
definitions are not general.  
 
Intuitively, when we say a process is rational, at least we 
believe that it can start and finish normally. Other 
requirement, such as no redundant, no waste of 
resources, can be thought as optimized beyond rational. 
Based on this recognition, we give a definition of 
process rationality form PIS (Process Instance 
Sub-graph), which describes the history of the execution 
of a process.  
 
Definition 1: PIS, A PIS is a DG (Directed Graph), 
which describes one of the history tracks of a process 
model. The node N in the DG represents the activities, 

events, operations, etc. The arc L represents the 
sequence of nodes. That is: 

),( LNDGpis ==             (1) 
The definition of PIS is independent of modeling 
methods. Nods in PIS can represent different meanings 
in terms of different modeling methods. For example, a 
node will be a Place or a Transition in a Petri-Net model; 
a node will be an UOB or a Junction in an eIDEF3 
model. Figure 3 is a PIS in eIDEF3 model. 
 

 
Figure 3 A PIS in eIDEF3 Model 

 
All PISs of A process P represent all the possible 
execution tracks:  

},...,1|{ cipisPIS i ==           (2) 
Here, c represents the counts of PISs of a process. The 
reason why a process has multi PIS is that many choices 
exist in a process. When a process is executed, different 
choice will produce different PIS.  
 
Further, when we are talking about a process, we must 
identify its start point and end point, so that we can 
distinguish the scope of a process. So, it is also a very 
important concept about process begin and process end. 
We give the definitions as below: 
 
Definition 2: PB and PE (Process Begin, Process End): 
PB and PE represent the start sign and end sign of a 
process. A process may have several PBs and PEs to 
represent multiple alternatives of starting and ending. 
That is, a process is a collection of PBs, PEs, and other 
nodes N： 

),,( NPEsPBsP =             (3) 
The definition of PB and PE is also independent of 
modeling methods. For example, in eIDEF3 models, 
PBs are those UOBs connected with Start Point, PEs are 
those UOBs connected with End Point.  
 
Thus, we can give the definition of process rationality 
based on PIS: 
Definition 3: Process Rationality, a process P is rational, 
if and only if all the PISs of it meet the following 
condition: 
PISs begin at the PB, end at the PE. That is:  

PEpisEndOf
PBpisBeginOf

psi

∈∧
∈

∀

)( 
 )(

,
            (4) 

Here， )( pisBeginOf  represent the UOB executed at 

the beginning of the pis, )( pisEndOf  represent the 
UOB executed at the end of the pis. 
And, other nodes of a pis will not belong to PB or PE: 



The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 

 

437 

)(
))()((

,

PEnPBnthen
pisEndOfnpisBeginOfnif

Nn

∉∧∉
≠∧≠

∈∀
     (5) 

It is obviously that this definition of process nationality 
emphasizes the normally beginning and normally 
ending of a process.  This is consistent with people’s 
intuitive comprehension. More important, this definition 
is given from process itself, and is not bounded with 
specified modeling methods. So it is more generic. 
Moreover, defining process rationality based on PIS has 
built the foundation to validate it by using simulation 
method.  
 

4. PROCESS RATIONALITY CRITERION IN 
EIDEF3 MODEL 

 
Before give the concrete algorithm, we will give the 
criterion based on some precondition and assumption.  
 
4.1Basic precondition and assumption 
 
Based on the requirement of eIDEF3 syntactical rules, 
the following basic precondition must be satisfied. 
 
1) An eIDEF3 model P is an all connected diagram from 
Start Point to End Point. No isolated nodes exist. That 
is:  

0)(0)(
,

≥∨≥
∈∀

nOutOfnInOf
Pn

      (6) 

 
2) Connection rules: The Precedence Links of UOB are 
single in and single out. The Precedence Links of 
FanOut Junction are single in and multi out. The 
Precedence Links of FanIn Junction are multi in and 
single out. The Precedence Links of Start Point are none 
in and multi out. The Precedence Links of End Point are 
multi in and none out. That is: 

 

)0)((int)_(
)0)((int)_(

)1)(()_(
)1)(()_(

)1)(1)(()(
,

==
==

≤∈
≤∈

≤∧≤∈
∈∀

nOutOfthenPoEndnf
nInOfthenPoStartnif

nOutOfthenJuctionFanInnif
nInOfthenJuctionFanOutnif

nOutOfnInOfthenUOBnif
Pn

     (7) 

 
Moreover, we give some basic assumption here, which 
is only for facilitating description of validation 
problems, and will not influence the applicability of the 
algorithm: 
 
1) Synchronous and Asynchronous Junctions are not 
differentiated. Alternate from synchronous to 
asynchronous, or from asynchronous to synchronous, 
will not change the Process Rationality. 
 
2) There is no “Or” junction in process models. Based 
on the semantic of the “Or” junction, we can use a 
combination of “And” and “Xor” junction to replace it.  

3) There is no feedback in a process. We assume that a 
process is a DAG （Directed Acyclic Graph). If a 
feedback is needed, we can put the feedback parts into 
the decomposed scenario, so that we can avoid dealing 
with it when using the validation algorithm. Then the 
rationality of the feedback parts can be determined by 
other methods.  
 
4.2 Criterion of Process Rationality 
 
We have provided three criterions to validate process 
rationality, below are the details: 
 
1) Structural Deadlock，SD 
If two or more of the FanOut branchs of “FanOut Xor” 
junctions joint in a “ FanIn And” junction, SD will 
happen. That is: 

SDisP

jiwherenOutPathnnOutPathn
JucntionAndFanInn

nOutOf
JucntionXorFanOutn

ji

  

   ,)()(                 
,__        

2)(        
 ,__

⇔

≠∈′∧∈′
∈′∃

∧≥
∈∃

  (8) 
As shown in figure 4, in this situation, the “FanIn And” 
junction will not be able to be triggered because it can 
not finsh all of its FanIn branch. Thus the process can 
not execute any more.  
 

 
Figure 4 A Process with SD 

 
There is a pis in such a process, which is blocked in the 
“FanIn And” junction, So that can not executes to the 
End Point: 

JunctionAndFanInpisEndOf
pis

__)(
,

∈
∃

  (9) 

That is, there is a pis that can not meet the equation (4), 
so we can deduct that a process with SD is not rational.  
 
2) Lack of Synchronization，LS 
If two or more of the FanOut branchs of “FanOut And” 
junctions can not joint in a “ FanIn And” junction, LS 
will happen. That is: 

LS  

   ,)()(                 
,__        

2)(        
 ,__

isP

jiwherenOutPathnnOutPathn
JucntionAndFanInn

nOutOf
JucntionAndFanOutn

ji

⇔

≠∈′∧∈′
∈′¬∃

∧≥
∈∃

 (10) 
As shown in figure 5, in this situation, the End Point of 
a process will be triggered multi times. Thus some 
activities will execute multi times meaninglessly.  



The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 

 

438 

 
Figure 5 A Process with LS 

 
There is a pis in such a process, which has several End 
Point in it: 

PEnpisEndOfnpisn
pis

∈∧≠∧∈∃
∃

)(
,

 (11) 

That is, there is a pis that can not meet the equation (5), 
so we can deduct that a process with LS is not rational.  
 
3) Objects Not Matched，ONM 
If a deadlock appears in a structural rational process 
because the definition of objects can not meet the 
requirement of process execution, ONM will happen. 
That is: 

ONMisP
nquirmentOfObjectnnitionOfObjectDefi

UOBn

  
)(Re)(       

 ,

⇔
≠

∈∃

 (12) 
For example, as shown in figure 6, the trigger of UOB 2 
needs two entities A, but only UOB 1 can output one 
entity A to UOB 2, so UOB 2 will not be triggered 
forever. 
  

 
Figure 6 A Process with Not Matched Entities 

 
Another example, as shown in figure 7, the trigger of 
UOB 2 needs two resources B, suppose there is only 
one resource B in the system, UOB 2 will not be 
triggered forever. 
 

 
Figure 7 A Process with Not Matched Resources 

 
In the ONM situation, there is a pis in such a process, 
which is blocked in the UOB that can not get enough 
objects, So that can not executes to the End Point: 

UOBpisEndOfpis ∈∃ )(,        (13) 
That is, there is a pis that can not meet the equation (4), 
so we can deduct that a process with ONM is not 
rational.  
 

5. VALIDATION ALGORITHM BASED ON 
SIMULATION 

 
About the simulation execution of eIDEF3 models, 
literature [5] has given a detailed introduction, so this 
paper will not represent more. The algorithm of 
rationality validation of a process model is built upon 
such simulation method. After simulation based on 
specified rules, all the PISs of the process can be 
explored. Then we can use the criterion to judge 
whether each pis is rational, thereby deduct whether the 
process is rational.  
 
5.1 Design of The Algorithm 
 
The purpose of the algorithm is to explore all the PISs 
of a process. Therefore, in order to guarantee the 
algorithm is completed and efficient, we can not 
simulate randomly, but based on specified rules. 
 
The reason why a process have multi PISs is that the 
existence of “FanOut Xon” junction bring on the 
possibility of multi process executions. Thus, if only we 
can explore all possible combinations of “FanOut Xon” 
junction, all PISs can be found.   
 
Below are the detailed steps of the algorithm: 
BEGIN 
1. Trigger the execution of Start UOB; 
2. Go on the execution according to the topology of the 
process. When “FanOut Xor” junction is meted, select one 
fanout branch randomly, then go on the execution. 
3. Repeat step 2 continuously, until one of the three situations 
appears: 
  IF( pis blocked in some node) 
                  /*process is deadlock */ 
  {    IF(blocked in “FanIn And” junction) 
                  /*SD, see equation (9)*/ 
      {  Structural Deadlock； 
         Error report； 
         RETURN; 
      } 
      ELSE IF(Blocked in UOB) 
                 /*ONM, see equation(13) */ 
      {   Objects Not Matched； 
          Error report； 
          RETURN; 
 
      } 
  } 
  ELSE IF(pis trigger End Point equal or more that 2 times) 
                 /* LS, see equation(11) */ 
  {    Lack of Synchronization； 
       Error report； 
       RETURN; 
 
  } 



The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 

 

439 

 ELSE 
  {     
  Get a rational pis; 
  } 
4. After getting a rational pis, select randomly one of the rest 
FanOut branck form the tailender “FanOut Xor” junction, 
repeat step 3, create a new pis; 
5. Repeat step 4, until all the “FanOut Xor” junction have 
been deal with. Then we get all the PISs of the process. Then 
we can conclude that this process is a rational one; 
END 
 
What have to point out is, this algorithm can find the 
mistake of rationality, and find the node where the 
mistake exists. But it can not correct the mistake 
automatically. You have to correct it manually, and 
execute the algorithm again, because new change may 
bring new mistakes in other place. Until no mistakes are 
found, you get a rational process finally. 
 
5.2 Analysis of the algorithm 
 
1) Completeness 
From the step 4 and step 5, we can see that for a rational 
process, this algorithm can deal with all the fanout 
branch of the “FanOut Xor” junction. So we can say 
that this algorithm can explore all PISs of the process.  
Once there is mistake in the process, the algorithm will 
come to step 3. Here it can tell where the mistake is. 
Users can use this message to correct models, and run 
the algorithm again. Until all mistakes have been 
corrected, the process will become rational. According 
to the analysis of last paragraph, all the PISs of a 
rational process can be explored completely. 
Therefore, this algorithm is completed. It can explore all 
PISs of a process, and find all mistakes in it. 
 
2) Complexity 
It is easy to conclude that for a rational process, to 
explore all the PISs, the time consumed will increase 
exponentially along with the amount of “FanOut Xor” 
junction:  

JunctionXorFanOutc
pathcO __=

       (14) 

Here, pathc
 is the average amount of fanout branch of 

the “FanOut Xor” junctions. 
 
3) Usability 
As we have mentioned at the beginning of this paper, 
most existing validation methods have many limitation 
in their usability. For example, the method of H. Lin can 
not validate complex models; the method of W.M.P 
requires the models must be free-choice. Our method 
has no rigorous limitation on process models, and the 
contents that can be validated are more abundant and 
complete. 
 
Compared to those methods that are based on Petri-net, 
the complexity of our method is much better. For most 

enterprises, a business process will not include too 
many “FanOut Xor” junctions (where decision making 
is needed). In the Chinese Aviation CIMS Project, we 
had build lots of business process models, among these 
models, the most complex model had no more the 10 
“FanOut Xor” junctions. For today’s computer, it is very 
easy to deal with such a complexity. 
 

5. CONCLUSION 
 

This paper presents a simulation-based business process 
rationality validation method. It has extended the scope 
of rationality validation, and also enriched the contents 
that can be validated. Although it is not the most 
efficient one, but for most business processes it is 
enough. So it is a validation method that is very suited 
for business process validation. Although this method is 
created based on eIDEF3, but the concepts about 
process rationality, process instance sub-graph, are 
independent of concrete modeling methods. So it is very 
easy to extend this method to other models, e.g. 
Petri-net models, workflow models, etc. 
 

ACKNOWLEDGEMENT 
 
The main result of this paper was created during my 
doctroal research, which was supported by China 863 
Program. The publication of this paper was supported 
by Scientific Fundation of Ireland. 
 

REFERENCES 
 
[1] Hofstede A.H.M., Orlowska M.E., Rajapakse J. 
Verification Problems in Comceptual Workflow 
Specifications. Proceedings of the 15th International 
Conference on Conceptual Modeling, volume 1157 of Lecture 
Notes in Computer Science. Cottbus, Germany: 
Springer-Verlag, pp73-88, 1995. 
[2] H. Lin, Z. Zhao, H. Li, and Z. Chen. A Novel Graph 
Reduction Algorithm to Identify Structural Conflicts[A]. 
Proceedings of the Thirty-Fourth Annual Hawaii International 
Conference on System Science. IEEE Computer Society Press, 
2002. 536, 540, 541, 546, 548, 550. 
[3] W.M.P. vander Aslst, Arthur HM, Ter Hofstede. 
Verification of Workflow Task Structures: A Petri-Net-Based 
Approach. Information Systems, 2000, 25(1): 43～69. 
[4] NIU Dong, NING Ke, LI Qing, CHEN Yuliu. Method and 
Tool for IDEF3 Based Process Modeling[J]. Computer 
Integrated Manufacturing Systems, 2001, 7(12): 30-34. 
[5] NING Ke, NIU Dong, LI Qing, CHEN Yuliu. 
IDEF3-based Business Process Simulation Modeling[J]. 
Computer Integrated Manufacturing Systems-CIMS, 2003, 
9(5): 351-356. 
[6] Aalst W.MP. Verification of Workflow Nets. Application 
and Theory of Petri Nets 1997, volume 1248 of Lecture Notes 
in Computer Science, Berlin: Springer-Verlag, 1997. 
407~425. 
[7] Wasim Sadiq, Maria E.Orlawska. Analyzing Process 
Models Using Graph Reduction Techniques. Information 
Systems, 2000, 25(2): 117～134.

 


