
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

422

Mapping from BPMN-Formed Business Processes to XPDL Business Processes

Jung, Moon-young, Hak Soo Kim, Myung Hyun Jo
Kyung Hyun Tak, Hyun Seok Cha, Jin Hyun Son

Department of Computer Science and Engineering, Hanyang University, Korea
{myjeong, hagsoo, mhjo, khtak, hscha, jhson}@cse.hanyang.ac.kr

ABSTRACT

In the business process management, many business process execution languages such as XPDL, BPML, BPEL4WS
have been specified with different origins and goals. Most of all, XPDL proposed by WfMC has been widely used in the
related applications, especially workflows whose concepts are currently interchangeable with those of business
processes. On the other hand, Business Process Modeling Notation (BPMN) driven by BPMI has recently been
specified as a standardized graphical notation for a business process. We can therefore commonly design and analyze
various business processes using the design tools to support BPMN. Notice that a BPMN-formed business process
should be converted to its semantically equivalent business process languages such as XPDL which can consequently be
executed by business process engines. In this regard, we propose a transformation mechanism from BPMN-formed
business processes to corresponding XPDL processes.

Keywords: BPMN, XPDL, business process

1. INTRODUCTION

With an increasing number of business applications that
automate business processes, many enterprises have
recently devoted considerable attention to business
process integration. The primary goal of business
process integration is inter-operating the information
flows between IT organizations that have used a
number of various terms to describe how components
can be connected together to build complex business
processes. For instance, if our system tries to connect a
partner during operating a business process, that is
composed of tasks such as catalogue request, order,
order processing, and dispatching, we must be required
business process integration technologies. It is
necessarily required many costs for reducing the
difference between methodologies of each vendor. For
merging business processes, which are located in
distributed environment, there is a standard interface
that provides flexibility or interoperability between
business processes. To streamline business operations, it
is important to define a standard business process
language in the first place that could be adapted in
complex business circumstances. It is a same reason that
the computing resource is composed by the
programming language such as C or Java. However, a
business process language is not relied on a physical
object such as operating systems or devices, but it must
be designed suitably in a logical meaning of a business
environment. Especially, it should be defined a
mechanism that one internal partner connects
dynamically the other external partners in distributed
environments. In order to meet these requirements,
researches of the business process language have been
broadly going to two trends.

The first of these trends is a research in business process
modeling language. It is lately remarkable by Business

Process Modeling Notation (BPMN) Working Group.
Although a business analyst doesn't know any
information about an internal mechanism of a business
process execution, it allows him to design a business
process using a business process modeling notation.
Examples of other notations or methodologies that were
reviewed are UML Activity Diagram, UML EDOC
Business Processes, IDEF, ebXML BPSS,
Activity-Decision Flow (ADF) Diagram, RosettaNet,
LOVeM, and Event-Process Chains (EPCs). BPMN has
more functionality and extensibility than other business
process modeling languages. So, we select BPMN for
mapping from a business process modeling language to
a business process execution language.

The second of these trends is a research in business
process execution language. It enables a system to
understand all of the information which makes our
business runs. Representatively, Business Process
Modeling Language (BPML) is developed by the
Business Process Management Initiative (BPMI),
Business Process Execution Language for Web services
(BPEL4WS) is written by developers from BEA
Systems, IBM, and Microsoft, and XML Process
Definition Language is announced by the Workflow
Management Coalition (WfMC). And they are
XML-based business process execution languages. To
minimize a modification of existing workflow
applications using XPDL, we select XPDL among a
number of business process languages.

Although there is a significant difference between two
trends, both in motivating business process modeling
and in their features, they have a strong common basis.
Thus, the convergence of two major trends is creating a
rapidly growing demand for a new breed of software
that facilities automation of business processes both
between enterprises and within an enterprise. However,

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

423

the difference between business processes represents a
partial meaning difference, but it raises enormously the
risk. In this paper, we describe how the mapping
mechanism reduces a meaning difference between
BPMN and XPDL. Figure 1 illustrates the mapping
structure of this paper; in the future we will plan to
study mapping mechanisms from BPMN-formed
business processes to BPEL4WS and BPML business
processes.

Figure 1. Transformation structure of BPMN

The remainder of the paper is organized as follows.
Section 2 presents an overview of related work. Section
3 describes Mapping from BPMN to XPDL. Section 4
contains concluding remarks.

2. RELATED WORK

There are several researches in mapping from business
process modeling notation to business process execution
language [1,3,4,5,6]. This Section describes mapping
mechanisms which have already been proposed.

[3] describes the mapping from BPMN to XPDL. It
shows that BPMN notations can be transformed to
XPDL straightforwardly, because of similar business
process structures within them. However, there are
BPMN notations which can not be mapped to XPDL,
straightforwardly. Therefore mapping is applicable to
only 10 BPMN notations. So, we will show the
mechanism which can be applicable to other BPMN
notations, either, in this paper.
[1] describes the mapping from BPMN to BPEL4WS. It
is accomplished by analyzing cases which BPMN
business process can be expressed. It also describes all
elements and attributes of BPMN mapping to
BPEL4WS elements. So, the number of pages of [1] is
more than 50. It may be complete, but it is too complex
to be proved.
[4] and [5] describe the mapping from UML Diagram to
XPDL. [4,5] shows business process can be expressed
using UML Diagram, and be mapped to XPDL. [4]
describes it using Use Case Diagram, Statechart
Diagram, and Activity Diagram with stereotypes, which
is defined extendedly, such as <<Route>>, <<No>>,
<<Tool>>, <<Subflow>>, <<Loop>>. [5] describes it
using only Activity Diagram with stereotypes, which is
defined extendedly, such as <<Business Document>>.
[6] describes the mapping from UML Diagram to
BPEL4WS. It shows business process can be expressed
using Class Diagram and Activity Diagram with

stereotypes, which is defined extendedly, such as
<<Process>>, <<Activity>>.

As shown in above, many researches select UML
Diagrams as a notation for business process modeling
more actively than BPMN. However, if we use UML
Diagram to model business process, and if we want to
transform the business process to a business process
language, we will need to extend the stereotypes which
are dependent on transformed languages.

Besides, there are several researches in expression
power of business process modeling notations or
business process execution languages [7,8,9,10,11,12].
(e.g., workflow patterns, Petri-net)

Like this, mapping mechanisms, which the existing
papers propose, are straightforward, case by case
analyzed, or system dependent formed. If a mechanism
is straightforward, it will be not complete, since a
difference of a notation and a language. If a mechanism
is case by case analyzed, it will be too complex to be
mapped, since it has to be analyzed in all cases. And if a
mechanism is language dependent formed, it will be not
appropriate for a standard mechanism. Therefore this
paper proposes a mapping mechanism from BPMN to
XPDL, which is not only simple, complete, but also
system interchangeable.

3. MAPPING FROM BPMN TO XPDL

Both BPMN and XPDL are conceived of as a directed
graph structure. So Mapping from BPMN to XPDL may
be described straightforwardly. e.g., A Task and a
Sub-Process of BPMN are transformed to an Atomic
Activity and a Subflow Activity of XPDL respectively,
and a Sequence Flow of BPMN is transformed to a
Transition of XPDL [3]. But because BPMN is designed
to model and to manage business processes and XPDL
is designed to execute business processes, we need to
consider some differences between BPMN and XPDL.
Firstly BPMN has several elements that are not for
executing business processes but only for modeling or
managing business processes. These BPMN elements do
not need to map to XPDL elements. Secondly, BPMN
has several elements that are for executing business
processes but do not transformed to XPDL elements
straightforwardly. The business processes, which are
represented using BPMN including these elements, have
to be transformed to the same meaning XPDL business
processes.

This Section describes mapping from BPMN to XPDL
as follows. In section 3.1 we extract a BPMN element
set, which consists of the BPMN elements that have to
map to XPDL elements. In section 3.2 we look around
the BPMN-formed business processes as a structural
point of view and compare these with XPDL business
processes. In section 3.3 we describe the mapping from
BPMN to XPDL straightforwardly and in section 3.4 we

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

424

propose the transformation mechanism for BPMN
elements which are not mapped to XPDL elements.

3.1 Analysis on BPMN Elements

Business processes are designed by business analysts
using BPMN notations, these BPMN-formed business
processes are transformed to XPDL processes for
executing business processes, and the executing
business processes are managed by business process
managers in BPMN format. That is, the BPMN consists
of elements for business process design, elements for
business process execution, and elements for business
process management, so several BPMN elements, which
are not for business process execution, don’t need to be
transformed to XPDL elements.

Figure 2. Major elements defined within BPMN

Figure 2 shows the major elements of BPMN and those
categories. In the Business Process Diagram, the
graphical objects (Flow Objects, Connecting Objects,
Swimlanes, and Artifacts) define Processes (business
processes); Flow Objects define the behavior of
Processes, Swimlanes group other elements and assign
roles to them, Artifacts provide additional information
about the Processes, and Connecting Objects represent
the order of Flow Objects or association between each
element. But Swimlanes, Artifacts, and some of
Connecting Objects (Message Flow and Association)
are not related to the business process execution. First, a
role, which is represented by Swimlanes, is a semantic
element which means the role of doing the work (e.g.
Seller, Buyer, Client, and etc.). But the element, which
we need to know for executing business process, is not a
role, but a performer. Second, Artifacts and Association
are not directly related to the flow of process. Third,
Message Flow shows the flow of messages between two
entities, but the actual message is not transmitted by
Message Flow but by applications or web services
which is bound by Flow Objects. Therefore we don’t
need to transform these BPMN elements to XPDL
elements. Moreover, each BPMN elements have their
attributes, and some of the attributes (i.e. Name, Author,
Language, CreationDate, ModificationDate,
GraphicElements, Status, Categories, InputSets, Input,
OutputSets, Output, BoundaryVisible) are not related to
business process execution. And there is no need to
transform these attributes to XPDL elements, either.
Figure 3 shows the BPMN elements, except the
elements which are described above. That is, these
elements are related to business process execution and
have to be transformed to XPDL elements.

Figure 3. BPMN elements which have to be
transformed to XPDL elements

3.2 Structural Mapping

A business process is a behavioral flow which is
structured by performers, services, and data. In a
business process, works, which is performed by
performers using services and data, are defined orderly.

Business process structure
of BPMN

Business process structure
of XPDL

Figure 4. Business process structures of BPMN and XPDL

BPMN and XPDL represent business processes
similarly, as shown in Figure 4. Processes, which are
defined by BPMN elements, are structured by Flow
Objects and Connecting Objects in directed graph
format. Also, Workflow Processes, which are defined by
XPDL, are structured by Activities and Transitions in
directed graph format. Like this, Business Process
Diagram, Processes, Flow Objects, and Sequence Flows
in BPMN are mapped to Package, Workflow Process,
Activity, and Transition in XPDL respectively.

Table 1. Structural mapping
BPMN element XPDL element

Business Process Diagram Package
Process Workflow Process
Flow Object Activity
Connecting Object Transition

And performers, services, and data which are the
elements of business processes are represented
Performer, Implementation, Property in BPMN, and
Performer, Tool, Data Field in XPDL.

Table 2. Business process elements mapping
BPMN element XPDL element

Performer (within Activity) Performer (within Activity)
Implementation (within Activity) Tool (within Activity)
Property
(within Process and Activity)

Data Field
(within Workflow Process)

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

425

3.3 Simple Mapping
In Section 3.2, we described that BPMN Flow Objects
and Connecting Objects are mapped to XPDL Activities
and Transitions. But BPMN Flow Objects and
Connecting Objects are classified with Events,
Activities, Gateways, and Sequence Flows, and these
are classified more detailed according to the value of
type related attribute. This Section describes mapping
from these detailed BPMN elements to XPDL elements
which are transformed straightforwardly.

3.3.1 Events
BPMN Event acts as an event, which occurs, or reacts
against another event. (e.g., cancel of an order,
modification of an order, and handling these events)
And it is classified according to its position (Start,
Intermediate, End) and the type of Trigger (Message,
Timer, Error, Cancel, Compensation, Rule, Link,
Complex, Terminate).

Table 3. BPMN Event mapping to XPDL
BPMN element XPDL element

None Start Event Route Activity
None End Event Route Activity
Message Start Event Route Activity and Formal

Parameters of Workflow Process
Message End Event Atomic Activity and Route Activity
Acyclic Timer Start
Event

Route Activity and No
Implementation Atomic Activity
including Deadline

Acyclic Timer
Intermediate Event
(Normal Flow)

No Implementation Atomic
Activity including Deadline

Acyclic Timer
Intermediate Event
(Exception Flow)

Deadline of Atomic Activity

In XPDL, there are some elements which it functions as
a BPMN Event. But because XPDL is on the basis of
data-based control, many of them are not supported.
Therefore, we describe these Events, which is not
transformed to XPDL yet, in Section 3.4.

3.3.2 Activities
BPMN Activity is work that is performed within a
business process. Activity is classified into Sub-Process
and Task according to the subject of the work, and these
are classified more detailed according to the method that
it works. And we can transform it into XPDL Activity as
shown in Table 4 and Table5.

Table 4. BPMN Sub-Process mapping to XPDL
BPMN element XPDL element
Embedded
Sub-Process Block Activity

Independent
Sub-Process Subflow Activity

Reference
Sub-Process

Block Activity or Subflow Activity
equivalent to the Activity referenced

Table 5. BPMN Task mapping to XPDL
BPMN element XPDL element
Service Task Atomic Activity
Receive Task Atomic Activity
Send Task Atomic Activity
User Task Atomic Activity including Performer
Script Task Atomic Activity including Extended

Attribute which can contain the script
Manual Task Manual Mode Atomic Activity
Reference Task Activity equivalent to the Activity

referenced

We didn’t describe the Mapping from Ad-Hoc
Sub-Process to XPDL yet. But because it is a kind of
complex mapping, we describe it in Section 3.4.

3.3.3 Gateways
BPMN Gateway controls the flow of both diverging and
converging Sequence Flow. And the types of Gateway
are classified according to split/merge and the function.
In XPDL, Route Activity implement split or join
transitions, and it works as BPMN Gateways according
to Transition Restriction element within Route Activity.

Table 6. BPMN Gateway mapping to XPDL
BPMN element XPDL element

Exclusive Decision (XOR)
– Data-Based

XOR Split Route Activity

Exclusive Merge (XOR)
– Data-Based

XOR Join Route Activity

Inclusive Decision (OR) AND Split Route Activity
Inclusive Merge (OR) AND Join Route Activity
Parallel Fork (AND) AND Split Route Activity
Parallel Join (AND) AND Join Route Activity
Complex Decision / Merge Combination with several Route

Activities and Transitions

We didn’t describe the mapping from Event-Based
Exclusive Decision to XPDL yet. But because it is a
kind of complex mapping, we describe it in Section 3.4.

3.3.4 Sequence Flow
BPMN Sequence Flow shows the order of Flow Objects.
And the types of Sequence Flow are classified
according to the value of Condition attribute. In XPDL,
as described in Section 3.3, Transition implements like
this. And the type of Transition is classified according to
Condition element, either.

Table 7. BPMN Sequence Flow mapping to XPDL
BPMN element XPDL element
Sequence Flow Transition
Conditional Sequence Flow Transition including

CONDITION Type Condition
Default Flow Transition including

OTHERWISE Type Condition

3.4 Complex Mapping

Complex mapping is the mapping for BPMN elements
(complex elements) which XPDL didn’t have as the
same function. That is, if we recompose a business

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

426

process, which is composed of BPMN elements
including the complex elements, to a business process,
which is composed of BPMN elements except complex
elements, we can transform the business process to
XPDL. It is the same as if “A = B” and “B = C”, then
“A = C”. This paper proposes following three
mechanisms for these transitive mapping.

Mechanism 1. Loop
The Loop means that it works more than one time. We
can apply this mechanism to the complex element, if the
element has the semantic of “it works repeatedly” or “it
works again”.

Figure 5. Loop transformation mechanism

Mechanism 2. Discriminator
The Discriminator means that it completes only a work
of all other works which are implemented concurrently.
We can apply this mechanism to the complex element, if
the element has the semantic of “it finishes B or C”.

Figure 6. Discriminator transformation mechanism

Mechanism 3. Serialization
The Serialization means that it transforms something,
which is serialized implicitly, to another thing serialized
explicitly. We can apply this mechanism to the complex
element, if the element has the semantic of “it works in
the order of a basis”.

Figure 7. Serialization transformation mechanism

Firstly, Cyclic Timer Event, Standard Loop Activity,
Sequential MultiInstance Loop Activity, and
StartQuantity attribute of Activity apply to the Loop;
Cyclic Timer Event represents the work which is
implemented in a cycle. Standard Loop and Sequential
MultiInstance Loop Activity represents the work which
is implemented repeatedly according to the Condition of
Activity. StartQuantity attribute of Activity represents
the work which waits until the number of token is
satisfied. And the Figure 8 shows the application of the
Loop transformation mechanism to these BPMN
elements.

Secondly, Message Intermediate Event (Exception
Flow), Error Event, Multiple Event, Terminate Event,
and Event-Based Exclusive Decision apply to the

Discriminator; Both Message Intermediate Event
(Exception Flow) and Error Event mean that whether it
flows normal flow or exception flow. Multiple Event
means that if one of the Event, which is assigned to
itself, occurs, it will be triggered. Terminate Event
means that it interrupts all the works, which is working
in the process, and end the process at once instead of
normal end. Event-Based Exclusive Decision means
that only one of the Events, which are in order, can be
triggered. And the Figure 9 shows the application of the
Discriminator transformation mechanism to these
BPMN elements.

Figure 8. Loop transformation class

Figure 9. Discriminator transformation class

Thirdly, Link Event and Parallel MultiInstance Loop
Activity apply to the Serialization; Link Event
represents the work which is to be connected to another
Link Event which has same LinkId. Parallel
MultiInstance Loop Activity means that it works same
work in parallel. And Figure 10 shows the application of
the Serialization transformation mechanism to these
BPMN elements.

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

427

Lastly, Ad-Hoc Sub-Process is the Process which the
order of the works and the end of the process is decided
by performers at execution time. So it works beginning
with the work, which is selected by a performer,
repeatedly until the CompletionCondition of the Ad-Hoc
Process is satisfied. Therefore Ad-Hoc Process applies
to both Loop and Discriminator. Figure 11 shows the
application of the transformation mechanisms to
Ad-Hoc Sub-Process.

Figure 10. Serialization transformation class

Figure 11. Transformation of Ad-Hoc Sub-Process

4. CONCLUSIONS

This paper focused on a problem which has arisen from
a meaning difference between BPMN and XPDL. We
have analyzed elements that are mapped from BPMN to
XPDL, and then have proposed three transitive mapping
mechanisms (loop, discriminator and serialization).

While the existing mapping mechanisms only selected
elements that can be directly mapped, we discovered all
of elements that are able to be mapped with a notation's
transformation without a meaning loss. These
methodologies transform a complex BPMN element
into several kinds of atomic and simple BPMN elements.
That is, because a reconstructed business process is
composed of elements, which are adapted to mapping to
XPDL, we can transform the BPMN- Formed Business
Processes to XPDL Processes.

We are going to develop a module with this mapping
mechanism. We will also plan to study mapping
mechanisms from BPMN to other business process
execution languages such as BPEL4WS and BPML.

ACKNOWLEDGEMENT

This work was supported by Korea Research
Foundation Grant (KRF-2004-003-D00327).
This work was supported by grant No.
R08-2003-000-10464-0 from the Basic Research
Program of the Korea Science & Engineering
Foundation.
This work was supported by the Ministry of Information
& Communications, Korea, under the Information
Technology Research Center (ITRC) Support Program.

REFERENCES

[1] BPMI.org., Business Process Modeling Notation
(BPMN), Version 1.0 - May 3, 2004.
[2] WfMC., Workflow Process Definition Language --
XML Process Definition Language (XPDL), Document
Number WFMC-TC-1025, Document Status - 1.0 Final
Draft. October 25, 2002.
[3] Stephen A. White., “XPDL AND BPMN”, Workflow
Handbook 2003.
[4] P. Jiang, Q. Mair, and J. Newman., “Using UML to
Design Distributed Collaboration Workflows: from
UML to XPDL”, The Twelfth IEEE International
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), 2003.
[5] R. Eshuis, P. Brimont, E. Dubois, B. Grégoire, and S.
Ramel., “Animating ebXML Transactions with a
Workflow Engine”, The Eleventh International
Conference on Cooperative Information Systems
(CoopIS 2003), Catania, Sicily, Italy, 2003.
[6] T. Gardner., “UML Modelling of Automated
Business Processes with a Mapping BPEL4WS”, The
17th European Conference on Object-Oriented
Programming (ECOOP), Germany, 2003.
[7] Workflow Patterns Home Page, Available from
http://www.workflowpatterns.com
[8] Stephen A. White., “Process Modeling Notations and
Workflow Patterns”, Workflow Handbook 2004.
[9] W.M.P. van der Alast., “Patterns and XPDL: A
Critical Evaluation of the XML Process Definition
Language”, 2002.
[10] P. Wohed, W.M.P. van der Aalst, M. Dumas, and
A.H.M. ter Hofstede., “Pattern Based Analysis of
BPEL4WS”, QUT Technical report, FIT-TR-2002- 04,
Queensland University of Technology, Brisbane, 2002.
[11] W.M.P. van der Aalst, M.Dumas, A.H.M. ter
Hofstede, and P. Wohed., “Pattern Based Analysis of
BPML (and WSCI)”, QUT Technical report,
FIT-TR-2002-04, Queensland University of Technology,
Brisbane, 2002.
[12] Robert Shapiro., “A Technical Comparison of
XPDL, BPML and BPEL4WS”, 2002.
[13] David Hollingsworth., “The Workflow Reference
Model: 10 Years On”, Workflow Handbook 2004.

