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ABSTRACT 

Electronic surveys are an important resource in data mining. However, how to protect respondents' data privacy during 
the survey is a challenge to the security and privacy community. In this paper, we develop a scheme to solve the 
problem of privacy-preserving data mining in electronic surveys. We propose a randomized response technique to 
collect the data from the respondents. We then demonstrate how to perform data mining computations on randomized 
data. Specifically, we apply our scheme to build a Naive Bayesian classifier from randomized data. Our experimental 
results indicate that accuracy of classification in our scheme, when private data is protected by randomization, is close 
to the accuracy of a classifier build from the same data with the total disclosure of private information. Finally, we 
develop a measure to quantify privacy achieved by our proposed scheme. 
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1. INTRODUCTION 
 

Data mining has emerged as a means for identifying 
patterns and trends from large amounts of data. To 
conduct data mining computations, we need to collect 
data first. However, because of privacy concerns, people 
might decide to selectively divulge information, or give 
false information, or simply refuse to disclose any 
information at all. There is research evidence [4] that 
providing privacy protection measures is a key to the 
success of data collection. 
 
There are many ways to collect data. For instance, data 
may be collected using transaction records. This can 
often be done without people's knowledge, and 
individuals have no control over what information can 
be collected. The evolving legal developments will 
hopefully soon preclude this questionable practice.  
Another way to collect data is to solicit respondents' 
responses via surveys, for example, respondents might 
be asked to rate certain products, or they might be asked 
whether they have a certain medical condition, etc.  
The collected data is entered into a database. Although 
answering survey questions gives respondents control 
over whether they want to disclose their information or 
not, privacy concerns might hinder the respondents from 
telling the truth or responding at all (we will refer to this 
problem as respondent privacy in electronic surveys.  
How can we improve the chance to collect more truthful 
data that are useful for data mining while preserving  
respondents' privacy? How can respondents contribute 
their personal information without compromising their 
privacy? 
 
We propose to use Randomized Response techniques [9] 
to solve the problem of respondent privacy in electronic 
surveys. The basic idea of randomized response is to 
scramble the data in such a way that data collector 
cannot tell with probabilities better than a pre-defined 
threshold whether the data from a respondent contain 
truthful information about the sensitive, private 

information. Although information  from each 
individual respondent is scrambled, if the number of 
respondents is significantly large, the aggregate 
information of these respondents can be estimated with 
reasonable accuracy. Such property is useful for naive 
Bayesian classification since it is based on aggregate 
values of a data set, rather than individual data items. 
The contributions of this paper are as follows: (1) We 
have modified naive Bayesian classification algorithm 
[7] to make it work with data disguised by randomized 
response techniques, and implemented the modified 
algorithm. (2) We then conducted a series of 
experiments to measure accuracy of our modified naive 
Bayesian algorithm on randomized data. Our results 
show that if we choose appropriate randomization 
parameters, the accuracy we have achieved is very close 
to the accuracy achieved by standard, unmodified naive 
Bayesian classifier on undisguised data. (3) We have 
developed a method to measure privacy achieved by our 
proposed approach. 
 
There are some related works [1, 2, 3, 5, 6, 8, 10] in 
privacy-preserving data mining. We do not discuss them 
in details because of space. 
 

2. BUILDING NAÏVE BAYESIAN CLASSIFIERS 
USING MULTI-VARIANT RANDOMIZED 

RESPONSE TECHNIQUES 
 

Randomized Response techniques were first introduced 
by Warner [9] to solve the following survey problem: to 
estimate the percentage of respondents in a population 
that has attribute A, queries are sent to a group of 
respondents. Since the attribute A is related to some 
confidential aspects of human life, respondents may 
decide not to reply at all or to reply with incorrect 
answers. For the purpose of this discussion, we will 
distinguish two types of questions in a survey: questions 
about the respondent's private information, and 
questions about the respondent's personal information. 
Both kinds of information refer to the attributes of the 
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respondent. The private information is an attribute the 
respondent would rather not disclose, including its 
probability distribution (e.g., whether the respondent 
has a certain medical condition; or whether she takes a 
given medication); personal information is also an 
attribute of the respondent, but unlike private 
information the respondents do not normally mind that 
data collector knows the probability distribution of 
personal information (e.g., what is the probability that 
the color of the respondent's hair being black, or what is 
the probability that she lives near a lake). We also 
assume that private and personal information are 
unrelated - e.g., taking a medication is unrelated to one's 
hair color. To enhance the level of cooperation, instead 
of asking each respondent whether she has the attribute 
A, data collector asks each respondent two unrelated 
questions. One of them asks private information, i.e., 
the one that data collector is interested in. The other 
refers to personal information. The answers to the two 
questions are unrelated to each other [9]. For example, 
the survey questions can be designed as follows: 
1. Do you have the private attribute A? 
2. Do you have the personal attribute Y? 
 
In practice, the first question could be "Are you taking 
medicine A?", and the second question could be "Do 
you live near a lake?". Respondents answer one of these 
two questions. They use a randomization device to 
decide which question to answer, without letting data 
collector know which question is answered. Each 
randomization device tells the respondent which 
question she is to answer: the probability of choosing 
 
The first question isθ , and the probability of choosing 
the second question is θ−1 . Although data collector 
learns a response (i.e., ``yes'' or ``no''), he does not 
know which question was answered by the  
respondents. It is important to engineer the interaction 
between data collector and respondent in such a way 
that the respondent will trust the system, i.e., the 
respondent will clearly understand that data collector 
has no way of knowing which of the two questions is  
answered. Thus the respondent feels that her privacy is 
preserved. We further comment on this in Sec.4.  Note 
that data collector only knows the probability 
distribution of the respondent's attribute Y. This is 
consistent with the interpretation of a personal attribute 
- data collector could know the distribution of the values 
(e.g., hair colors) of the personal attribute in the general 
population, without knowing the value of that attribute 
for a specific respondent. 
 
The randomized response technique discussed above  
considers only one attribute. However, data sets usually 
consist of multiple attributes; finding the relationship 
among these attributes is one of the major goals for data 
mining. Therefore, we need techniques that can handle 
multiple attributes while supporting various data mining 
computations. In this paper, we provide multi-variant 

randomized response technique (MRR) to address the 
problems of respondent privacy in electronic surveys. 
 
2.1 Notations 
 
In this work, we assume data are binary, but the 
techniques can be extended to categorical data.  
Suppose there are N private attributes ( NAAA ,,, 21 L ) 
in a data set A. We construct N personal attributes 
( NYYY ,,, 21 L ). We want one private attribute (question) 
to pair with one personal attribute (question), therefore 
we make the number of attributes of Y and the number 
of attributes of A be equal. Let A and Y represent any 
logical expression based on those attributes 

]),1[( NiAi ∈ and ]),1[( NiAi ∈ .  For example, A can 

be )1()0( 21 =∧= AA and Y can be )1()0( 21 =∧= YY . 
Let P(Y) be the proportion of the records in the personal 
 data that satisfy Y= true. Let )(* AP be the proportion 
of the records in the whole randomized data set that 
satisfies A= true. Let P(A) be the proportion of the 
records in the whole non-randomized data set that 
satisfy A= true (the potential non-randomized data set 
which in reality does not exist). )(* AP can be observed 
from the randomized data, but P(A), the actual 
proportion that we are interested in, cannot be observed 
from the randomized data because the non-randomized 
data set is not available to anybody; we have to estimate 
P(A). The goal of MRR is to find a way to estimate P(A) 
from )(* AP .  
 
2.2 Multi-variant Randomized Response Scheme 
 
In this scheme, all the attributes including the class label 
will be treated as a group. They either keep the same 
values or obtain the values from personal data. In other 
words, when sending the private data to data collector, 
respondents either tell their answers to the private 
questions or tell their answers to the personal questions. 
The probability for the first event is θ , and the 
probability for the second event is θ−1 . For example, 
assume a respondent's attribute values 1A and 2A are 11 
for private data; and the respondent's attribute values 

1Y and 2Y  are 01. The respondent generates a random 

number between 0 and 1; if the number is less than θ  
she sends 11 to data collector; if the number is bigger 
than θ , she sends 01 to data collector. Since data 
collector only knows θ which is the same for all 
respondents and does not know the random number 
generated by each respondent, he cannot know whether 
the respondent tells the values from private data or 
personal data. To simplify our presentation, we use 
P(A(11)) to represent )11( 21 =∧= AAP , P(Y(11)) to 
represent )11( 21 =∧= YYP where “∧ ” is the logical  
and operator. Because the contributions to 

))11((* AP partially come from P(A(11)), and partially 
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come from P(Y(11)), we can derive the following 
equation: 

)1())11(())11(())11((* θθ −⋅+⋅= YPAPAP  

Since P(Y(11)) is known as Y is personal data, θ  is 
determined before collecting the data, and 

))11((* AP can be directly computed on the disguised 
(randomized) data set. By solving the above equation, 
we can obtain P(A(11)), the information needed to build 
a naive Bayesian classifier. The general model is 
described in the following: 

)1()()()(* θθ −⋅+⋅= YPAPAP    (1) 
 

2.3 Building Naïve Bayesian Classifiers 
 
The naive Bayesian classifier is one of the most 
successful algorithms in many classification domains. 
Despite of its simplicity, it is shown to be competitive 
with other complex approaches, especially in text 
categorization and content based filtering. The naive 
Bayesian classifier applies to learning tasks where each 
instance x is described by a conjunction of attribute 
values and where the target function f(x) can take on 
any value from some finite set V. A set of training 
examples of the target function is provided, and a new 
instance is presented, described by the tuple of attribute 
values >< naaa ,,, 21 L . The learner is asked to 
predict the target value for this new instance. Under a 
conditional independence assumption, i.e., 

∏
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To build a NB classifier, we need to compute )( jvP  

and )( jj vaP ∧ . To compute )( jvP , we can use the 

general model  (Eq.(1)) with A being )( jvC =  and Y 

being )( jvCY =  where C is the class label for the 

private data A and CY is the class label of personal data 
Y. )(* AP can be computed directly from the (whole) 
randomized data set. P(Y) is known since it is personal 
and θ is known as well. By knowing θ , data collector, 
who conducts the training, only knows the probability 
of the training data being private, but does not exactly 
know if each value is private data or not. By solving the 
above equation, we can get P(A) which is )( jvCP =  

in this case. Similarly, we can compute )( ji vaP ∧  

using the general model (Eq.(1)) with A being 
)( jii vCaA =∧=  and Y being )( jii vCYaY =∧= .  

 
2.4 Testing 
Conducting the testing is straightforward when data are 

not randomized, but it is a non-trivial task when the 
testing data set is randomized. When we choose a record 
from the testing data set, compute a predicted class label 
using the naive Bayesian classifier, and find out that the 
predicated label does not match the record's actual  
label, an we say this record fails the testing? If we knew 
whether the record represents the private or the personal 
data, and if we knew the true class for each data, we 
could easily answer this question. But how can we 
compute the accuracy score of a NB classifier when 
data are randomized? Our answer is to apply the 
multi-variant randomized response technique once again 
to compute the accuracy. Let us use an example to 
illustrate how to compute the accuracy.  Assume the 
number of attributes is 2.  To test a record 

)0,1( 21 == AA  denoted by A(10), we feed A(10) and 
Y(10), where )0,1( 21 === YYY to the NB classifier 

built in Sec.2.3. Let ))((* ccAP  be the proportion of 
correct predictions using the disguised (randomized) 
testing data set, P(Y(cc)) be the proportion of correct 
predictions in the personal data, and let P(A(cc)) be the 
proportion of correct predictions in the private data.  
P(A(cc)) is what we want to estimate.  Because 

))((* ccAP  consist of contributions from P(A(cc)) and 
P(Y(cc)), we have the following equation: 

)1())(())(())((* θθ −⋅+⋅= ccYPccAPccAP  

Where ))((* ccAP can be obtained from disguised testing 
data set. θ  is known and by knowing θ , data 
collector, who conducts the testing, only knows the 
probability of the testing data being private, but does not 
exactly know if each value is private data or not. How 
does data collector know P(Y(cc))? One implementation 
is as follows: each respondent is given the same 
classifier by data collector. The classifier is constructed 
during the training (Sec.2.3). Each respondent applies 
this classifier on her personal data Y and communicates 
the number of correct predictions (0 or 1) to data 
collector, who then computes (Y(cc)). Note that data 
collector does not know the values of the Y attributes, 
only the result of the classifier. Data collector can solve 
the above equation and get P(A(cc)), the accuracy score 
of testing.  
 

3. EXPERIMENTAL RESULTS 
 

To evaluate the effectiveness of our proposed scheme, 
We conducted experiments on two real life data sets 
Adult and Breast Cancer which were obtained from the 
UCI Machine Learning Repository. 
 
3.1 Experimental Steps 
 
We modified naive Bayesian classification algorithm to 
handle randomized data based on our proposed scheme. 
We applied our scheme to obtain a privacy-oriented 
classifier. We also ran naive Bayesian classification 
algorithm on original data set, and obtained a base 
classifier. We then applied the same testing data to both 
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classifiers. Our goal is to compare classification 
accuracy of these two classifiers.  Obviously we want 
accuracy of privacy-oriented classifier to be close to  
accuracy of the base classifier. Our experiments consist 
of the following steps: 
 
Step I: Preprocessing 
Since we assume that data set contains only binary data, 
we first discretize original non-binary data to become 
binary. We split the value of each attribute from the 
median point of the range of the attribute. After 
preprocessing, we randomly divided data sets into a 
training data set D (80%) and a testing data set B (20%). 
Note that B will be used for comparing our results with 
benchmark results.  
 
Step II: Benchmark 
We use D and the original NB classification algorithm 
to build a classifier DT ; we use data set B to test the 
classifier, and get an accuracy score. We call this score 
original accuracy (or benchmark score). 
 
Step III: θ  Selection 
For θ  = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 
and 1.0, we conduct the following 4 steps: 
 
Sub-step 1: Randomization 
We create a disguised data set G. For each record in 
training data set D, we generate a random number r 
from 0 to 1 using uniform distribution. If r <θ , we copy 
the record of D to G without any change; if θ≥r , we 
randomly generate the values for a record of Y 
according to the pre-defined probability and copy the 
record values to G. In this paper, each record of Y is 
randomly generated such that each logical expression 
(Y) appears with the probability of 0.5. That is 

5.0=yW  (ref.Sec.4). We perform this randomization 

step for all the records in the training data set D, then 
generate the new data set G. 
 
Sub-step 2: Classifier Construction 
We use data set G and our modified NB classification 
algorithm to build a naive Bayesian classifier GT  
 
Sub-step 3: Testing 
We use data set B to test and get an accuracy score S.  
Sub-step 4: Repeating 
We repeat steps 1-3 for 1000 times, and get 

100021 ,,, SSS L . We then compute mean and variance of 
these 1000 accuracy scores. 

 
Figure 1 

 
Figure 2 

 
3.2 Accuracy Analysis 
 
3.2.1 Analysis of Mean 
 
Fig.1 and Fig. 2 shows mean values of accuracy scores 
for Adult and Breast-Cancer data sets respectively. We 
can see from figures that when 1=θ , the results are 
exactly the same as the results when standard, 
unmodified classification algorithm is applied. This is 
because when 1=θ , randomized data sets are all from 
private data D. Whenθ  approaches 1, contribution of 
private data is enhanced; with θ  deviating from 1, the 
contribution of private data is decreasing (when 0=θ , 
collected data set is all from personal data). Therefore, 
when θ  moves from 1 towards 0, the mean of 
accuracy has the trend of decreasing.  
 
3.2.2 Analysis of Variance 
 
Fig. 3 and Fig.4 shows variances of accuracy scores. 
When θ moves from 1 towards 0, the degree of 
randomness in disguised data is increasing, variance of 
estimation used in our method becomes larger. Variance 
changes with different randomization levelsθ . When θ  
is near 0, randomization level is much higher and  
private data is better disguised.  We do not show 
variance when 0=θ . In this case, since collected data 
set is actually personal data and the probability 
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distribution for it is always the same for each iteration, 
variance is 0. 
 

 
Figure 3 

 
Figure 4 

 
4. MEASURING PRIVACY 

 
Various privacy enhancing techniques [5, 8. 11. 14, 15, 
16] have been developed to protect data privacy. To trust 
a privacy enhancing technology, we need to know how 
much privacy that a particular technique protects. A 
challenge faced by privacy-preserving data mining 
community is how to measure privacy. A general 
privacy measure which can quantify privacy for any 
privacy protection scheme is still an open question. In 
this section, we develop a privacy measure for our 
proposed multi-variant randomized response technique. 
Our measure contains two steps: First, we measure 
privacy for a single entry. Second, we select the 
minimal privacy value and treat it as the privacy level 
for the group. The reason why we choose the minimal 
value for the group is that, when the entries are 
randomized together, finding the original value for one 
entry will cause disclosing the original values for other 
entries in the group.  
 
For a single entry, original value can be 1 or 0; 
randomized value can be 1 or 0 as well. Privacy comes 
from uncertainty of original value given a randomized 

value. In other words, if original value is 1, given 
randomized value 1 or 0, privacy will be the probability 
that data collector guesses the original value being 0. 
There are four possible randomization results: 

• Original value is 1, value after randomization 
is 1; 

• Original value is 1 but value after 
randomization is 0;  

• Original value is 0 but value after 
randomization is 1;  

• Original value is 0, value after randomization 
is 0. 
Let's use the following denotations: 

• Let's mO  be the original value;  

• Let's mR  be the value after randomization; 

• Let's mG  be the guessed value.  

• Let's aW  be the probability that a value is 1 in 
data set A, and the probability that a value is 0 in data 
set A is )1( aW− ;  

• Let's yW  be the probability that  a value is 1 

in data set Y, and the probability that a value is 0 in data 
set Y is )1( yW− ; 

Privacy for a single entry, denoted by $PSE$, can be 
derived as follows: 

4321

)0|1()0|0Pr()0Pr

)1|1Pr()0|1Pr()0Pr(

)0|0Pr()1|0Pr()1Pr(
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The first component contains three parts: 
1. )1Pr( =mO is the probability that a value is 1 in 

private data set (A), which is aW .  

2. )1|1Pr( == mm OR is the probability that a 
randomized value is 1 given the original value is 1. 
There are two possibilities: (1) a randomized value 
comes from data set A, and the probability for the case 
is θ ; (2) a randomized value comes from data set Y, 
and the probability for this case is yW⋅− )1( θ . 

3. Let )|( mm RG be the guessed value given a 

randomized value and )|( mm RO  be the original value 

given the same randomized value. For the same mR  

value, there are two possibilities: mm OG = or mm OG ≠ . 

We should notice when )|()|( mmmm RORG ≠ , there is 
zero contribution to PSE. For instance, in the first 
component, the original value is 1, the guessed value is 
0 given the randomized value is 1. When 

)|()|( mmmm RORG ≠ , then the guessed will be 1. That 
is the guessed value and the original value is the same 
(both of them are 1s) and it contributes zero to the PSE.  
Therefore, we only consider the case where 
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)|()|( mmmm RORG =  for the third part. We can apply 
Bayes rule to tackle this part. After applying the Bayes 
rule, we obtain )1Pr(/)0Pr()0|1Pr( ==⋅== mmmm ROOR . 

)0Pr( =mO  is the probability that a value is 0 in private 

data set (A), which is aW−1 . )0|1Pr( == mm OR  is the 
probability that a randomized value is 1 given the 
original value is 0. In this case, randomized value 
cannot come from private data since original value is 0 
and randomized value is 1. The only possibility is that 
randomized value is from personal data set Y, and the 
probability is )1()1( yW−⋅−θ . As for )1Pr( =mR , we 

can extend this term and details are shown as follow: 

)1()1()1(])1([

)1()1()1(])1([
)0Pr()0|1Pr()1Pr()1|1Pr(
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Similarly, we can obtain other components, and we then 
get  

ayay

yyaa

ayay

yaa
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Eq. (2) 

 
We compute PSE for each single entry. We then select 
the smallest value PSE(Min) as the privacy value for the 
group. We can see from Eq.(2) that, PSE is determined 
by three parameters: (1) control parameter θ ; (2) 
private data (ref. to as data set A in Sec.2) distribution 

aW ; (3) personal data (ref. to as data set Y in Sec.2) 

distribution yW . What we can see from PSE equation is 

that, when aW  = 0.9, 0.8, 0.7, 0.6 privacy is symmetric 

with respect to privacy when aW = 0.1, 0.2, 0.3, 0.4. In 

other words, given a certainθ , PSE value will equal to 
the PSE value when control parameter is θ−1 . 
 

 
Figure 5 

 
To get better sense of our proposed privacy measure, we 
conducted a set of experiments on private data sets with 

various distributions and personal data set with 
5.0=yW . Specifically, we conduct experiments when 

aW  = 0.1, 0.2, 0.3, 0.4, and 0.5. For each data 
distribution, we compute privacy value for the cases 
where θ  = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.  
As we see from results in Fig. 5: 

• When 1=θ , private data is fully disclosed. 
Privacy value is 0;  

• When 0=θ , data collector gets no private data, 
and the data obtained are all personal data. In this case, 
privacy level of private data is the highest.  

• When θ  is away from 1 and approaches 0, 
the elements of private data contribute less to the 
classification, and the probability of disclosing private 
data is decreasing. Therefore privacy level of   private 
data increases.  

• When private data (A) distribution approaches 
to uniform )5.0( =aW , privacy level is increasing. Since 
uniform distribution will make original data 
recoverability be the lowest. 
 
Empirical results from Sec.3 and Sec.4 confirm that 
recoverability and privacy are complementary goals. 
Given aW and yW , the best privacy is achieved when 

control parameter θ  is 0; however, the accuracy will 
be the worst in this case. The best accuracy is attained 
when 1=θ but privacy is the worst. Trade-offs are also 
applied when θ  has a value between 0 and 1. In 
practice, how to select θ  is dependent upon our 
primary goals. If we want to the results be very precise, 
we need choose the values near 1; in contrast, if privacy 
is the primary goal, we choose the values near 0.  

 
6. CONCLUDING REMARKS 

 
In this paper, we have presented a method to build naïve 
Bayesian classifiers using multi-variant randomized 
response technique. Experimental results show that 
when we select an appropriate randomization parameter 
θ , we can get fairly accurate classifiers comparing to 
the classifiers built from undisguised data. A privacy 
measure was developed and privacy analysis was also 
conducted. Trade-offs between privacy and accuracy are 
discussed. The proposed multi-variant unrelated 
question model has a broader impact in the sense that it 
can be used not only for naïve Bayesian classification, 
but also can be utilized in many other 
privacy-preserving data mining computations, such as 
decision tree induction, Bayesian classification, 
probabilistic-based clustering.  As future work, we will 
apply the proposed scheme to other data mining 
problems. 
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