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ABSTRACT 

With the technology development of natural language processing, many researchers have studied Machine Learning (ML), 

Deep Learning (DL), monolingual Sentiment Analysis (SA) widely. However, there is not much work on Cross-Lingual SA 

(CLSA), although it is beneficial when dealing with low resource languages (e.g., Tamil, Malayalam, Hindi, and Arabic). This 

paper surveys the main challenges and issues of CLSA based on some pre-trained language models and mentions the leading 

methods to cope with CLSA. In particular, we compare and analyze their pros and cons. Moreover, we summarize the valuable 

cross-lingual resources and point out the main problems researchers need to solve in the future. 

 

Keywords:  multilingual, sentiment analysis, pre-trained language models, BERT, GTP. 

 

INTRODUCTION 

The rapid development and popularisation of the Internet inevitably lead to a significant increase in the amount of data 

(Coffman & Odlyzko, 2002). Moreover, with the massive network texts containing mixed data such as text, audio, and video in 

various languages, people face complex information. 

 
In particular, SA detects, analyses, and extracts attitudes, opinions, and sentiments expressed by people in a given dataset (Liu 

& Zhang, 2012; Cambria et al., 2017). SA is a subfield of Natural Language Processing (NLP) (Al-Saqqa & Awajan, 2019), 

and it is also called opinion mining, orientation analysis, sentiment classification, and subjective analysis. SA tasks involve 

many NLP problems, including entity recognition, word polarity disambiguation, satire detection, and aspect extraction. The 

number of issues in a SA task is directly proportional to the difficulties users face in their application. 

 

The SA of online comments needs to consider the sentimental polarity, sentimental intensity, and sentimental polarity analysis. 

And online sentiment analysis has been applied to many fields to solve different problems, such as understanding the emotions 

of comments on various social platforms and understanding product reviews to promote product performance (Puranik et al., 

2021; Hegde et al., 2021; Yasaswini et al., 2021; Ghanghor et al., 2021). The main task of the research is to identify the 

subjective attitudes or opinions expressed by people, and the purpose of sentimental intensity analysis is to define the intensity 

of the commenters’ expressions range. Most studies treat SA as a simple classification problem, but SA is a massive suitcase 

research problem (Cambria et al., 2018). The reason for this is that SA needs to solve many issues in natural language 

processing, including named entity recognition, word polarity disambiguation, satire detection and aspect extraction. Therefore, 

each subtask is extremely important and faces unresolved issues. For example, if there are multiple opinion targets for aspect-

based SA, the aspect extraction sub-task is ignored, significantly reducing classification accuracy. Therefore, the number of 

subtasks included in SA tasks is directly proportional to the difficulties they face. 

 

In recent years, with the development of NLP technology, it is gradually applied to various popular fields, such as translation 

systems, search engines, natural language assistants, and sentiment analysis, and it has also solved many urgent problems in 

society, which is of great significance (Acheampong, Nunoo-Mensah & Chen, 2021; Yue et al., 2019; Chowdhury, 2003). 

Especially after combining NLP, ML technology and DL technology for sentiment analysis, monolingual SA research has 

gradually matured. However, although cross-lingual SA is a unique and essential research direction in SA, there is little work. 

Moreover, although there have been extensive studies on the polarity of SA, they mainly focus on language with rich resources. 

English is the most common language in the world. Therefore, most researchers focus on the SA task of English, so they have 

many ready-made research resources. 

 

On the other hand, research on SA involving Hindi and Arabic is minimal, and the lack of resources has brought problems to 

researchers, and it has also attracted widespread attention from industry and academia (Yu, 2009). Therefore, to facilitate the 

research on CLSA, in this paper, we will survey the existing methods for CLSA. CLSA was called multilingual subjective 

analysis (Banea et al., 2008). 
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Although there are some surveys on SA, including machine learning-based methods (Sasikala & Sukumaran, 2019), deep 

learning-based methods (Yadav & Vishwakarma, 2020), and aspect-level SA (Nazir et al., 2020), these surveys are all aimed at 

SA. Unlike these surveys, in this paper, we survey CLSA based on pre-trained language models. Although some surveys on 

CLSA (e.g., (Pikuliak, Šimko & Bielikova, 2021)) do not focus on pre-trained model-based methods for CLSA, we do. And 

they do not include the latest research and techniques since 2019, but we do. 

 

We organise the rest of this paper as follows. The second section briefs CLSA. The third section recaps pre-trained models. 

The fourth section reviews some cross-lingual pertained model-based methods for CLSA. The fifth section discusses this paper. 

Finally, the sixth section concludes this paper. 

 

CROSS-LINGUAL SA 

This section will give a general discussion of CLSA. 

 

Motivation 

The lack of reliable language sentiment resources is an important reason for the CLSA task. Sentiment vocabulary includes 

SentiWordNet (Esuli & Sebastiani, 2006) and MPQA (Blitzer, Dredze & Pereira, 2007). Similar to these public sentiment 

resources, most of the sentiment resources are English. There are far more sentiment resources in English with annotations 

than in other languages. This data imbalance problem has led to CLSA, and it is a time-consuming and laborious task to label 

the sentiment tags of each language manually. Researchers use “borrowing” a rich language resource to another scarce 

language for SA to solve the problem. 

 

Thus, the problem of CLSA involves the source language and the target language. The source language refers to a language 

with many research results of SA and rich sentiment resources. The target language is a language with few research results, 

lacks sentiment resources, or has a few unreliable sentiment resources. 

 

Main task 

Shanahan et al. (2004) have explored the use of machine learning and translation technology to mine multiple languages’ 

views as a pioneering work on CLSA. Specifically, this task first uses the rich source language resources to train the sentiment 

or opinion classifier, then uses the translation tool to translate the target language into the source language and apply the 

trained classifier to classify. Finally, it divides the review text among different sentiment polarities. A variant strategy based on 

this is to first translate the existing knowledge of various language databases into the target language, use the translated 

resources to train the classifier, and then the classifier analyses the sentiments or opinions of the target language. The 

difference between the two methods is whether to use the source language or the target language to train and build the 

classifier. The target language is translated into the source language using the source language; the source language resources 

are translated into the target language if using the target language. 

 

As an essential topic of text analysis, CLSA uses the source language to assist SA in the target language by establishing a 

connection between a source language and a target language. Next, we should develop appropriate knowledge transfer methods 

to use annotation data from the source language to supervised or semi-supervised train the target language’s sentiment 

classification model. These methods can automatically use and transform knowledge from the source language to generate and 

expand pseudo-training data in the target language. 

 

Main methods 

Researchers mainly divide CLSA methods into machine translation-based methods (Zhou et al., 2016), machine learning-based 

methods (Shanahan et al., 2004), structural correspondence learning-based methods (Blitzer, Dredze & Pereira, 2007; Li et al., 

2017), transfer learning-based methods (Xu, Xu & Wang, 2011), deep learning-based methods (Dong & De Melo, 2018), and 

so on. Early researchers mostly used machine translation-based methods and structural correspondence learning-based methods 

to solve CLSA. However, the in-depth research and practice of ML and DL in NLP brought new ideas to CLSA. As a result, 

more researchers use machine learning-based methods, transfer learning-based methods, deep learning-based methods, and 

hybrid methods to solve CLSA problems. 

 

If using learning-based for CLSA, there are mainly three methods for training: (1) Monolingual training and direct conversion: 

Mikolov, Le, and Sutskever (2013) show that linear transformation can transform the word vector of a source language into the 

word vector of the target language. For example, when training, we enter a Chinese “angry” word vector; this model can find a 

word vector that looks similar to English “angry”. When testing, we enter a word vector for “happy” to get a word vector 

identical to the English one. (2) Monolingual training, respectively, conversion to third-party semantic space: Faruqui and Dyer 

(2014) do one of the well-known studies. It converts two-word vectors into a third-party space and hopes that the converted 

Chinese “angry” and converted English “angry” are together in the third-party space. The process of learning this model 

maximises the similarity between the translated words in our parallel corpus, that is, try to make Chinese “angry” and English 

“angry” close in the third-party space during the learning process. (3) Bilingual training together: Two representative studies 
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are (Gouws, Bengio & Corrado, 2015) and (Chandar et al., 2014). The first two methods are performed separately by learning 

a single-word vector and a bilingual word vector, then find ways to make a relationship between the single-word learned 

vectors. In short, can we start bilingual learning directly from the beginning? That is to learn the word vector while learning the 

relationship between bilinguals at the same time. The translated words should be as much as possible, and the not translated 

words should not matter. 

 

The straightforward way to apply knowledge of one language to another is to use machine translation (such as Google Trans 

and Yahoo Trans), which can translate the entire corpus into a feasible solution. Language translation is the first step of the 

machine translation-based method. The second step is to use the Transfer Learning (TL) method (e.g., (Yu & Jiang, 2016)) to 

transfer the learned knowledge in a source language to a target language for CLSA; TL is a strategy that develops from one 

language knowledge to another language. However, when applying TL into CLSA, we have to manually select domains to 

share sentiment words, which may be inefficient. 

 

Challenges 

Researchers have done much work on CLSA, but some unsolved problems still exist. (1) CLSA is to identify the sentiment 

polarity of the target language by using the sentiment knowledge of the source language. The effective sharing of sentiment 

knowledge across languages is a considerable challenge for CLSA tasks. Designing reliable sentiment knowledge sharing 

channels and strategies and constructing beneficial cross-lingual sentiment expression associations are the current research on 

CLSA. (2) Cross-lingual sentiment knowledge transfer and adaptability, cross-lingual sentiment expression correlation 

research, and inherent differences in sentiment polarity expression. Some researchers are also committed to studying some 

resources that can apply CLSA, including datasets (Chakravarthi et al., 2020; Patra, Das & Das, 2018; Priyadharshini et al., 

2018), sentiment dictionaries, and bilingual word vectors (Ziser & Reichart, 2018; Kuriyozov, Doval & Gómez-Rodríguez, 

2020; Kuriyozov et al., 2019; Chen et al., 2020). 

 

 
Source: the study. 

Figure 1: The process of pre-trained the model. 

 

PRE-TRAINED MODELS 

In this section, we will brief pre-trained models. 

 

Pre-trained models are a new paradigm in NLP (Li et al., 2021). As shown in Figure 1, the pre-trained model is a trained and 

saved network. The model is previously trained on a large-scale corpus through self-supervised learning. The pre-trained stage 

used self-supervised knowledge to learn common sense irrelevant to specific tasks from a large corpus; after fine-tuning, the 

final model is formed. Moreover, pre-trained can be regarded as regularisation to prevent the model from overfitting small data 

(Erhan et al., 2010). 

 

From 2013 to 2020, the pre-trained model is updated year by year. As early as 2013, Word2vec started the prelude of the pre-

trained model, which Mikolov et al. (2013) proposed. It is a pre-trained model to generate word vectors. According to the 

corpus, the optimised training model quickly and effectively expressed a word into vector form. Word2vec is also a word 

embedding model widely used in emotion analysis, with excellent analysis performance (Alnawas & Arici, 2021). Word2vec 

has two algorithms for generating word vectors, Skip-Gram (SG) and Continuous Bag-of-Words (CBOW). According to the 

research of Mikolov et al., SG has good performance in small training data, but CBOW is very efficient, and its accuracy for 

frequent words is also higher than SG. 

 

Pennington, Socher, and Manning (2014) propose GloVe to overcome Word2vec’s defect: it has a low vector dimension and 

cannot completely contain the data in the corpus. Meanwhile, GloVe takes advantage of the matrix factorisation method and 

the shallow window-based method. As a result, it can include the local or global information of specific words in the corpus, 

which is necessary for improving performance. Moreover, it can be more generalised in the process of word embedding than 

Word2vec. 
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Bahdanau, Cho, and Bengio (2015) first used the Attention Model (AM) in machine translation, but now it is more and more 

widely used in the field of NPL (Galassi, Lippi & Torroni, 2020). The first pre-trained model was developed in 2015, 

combining a mechanism with Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997), breaking the limitation 

that the traditional encoder-decoder structure relies on a fixed-length vector in its encoding and decoding. The AM + LSTM 

model retains the intermediate output results of the LSTM encoder on the input sequence and then trains a model to selectively 

learn these inputs and associate the output sequence with the model output. 

 

In 2016, the pre-trained model based on self-attention came into being. Self-attention has another name, internal attention, 

which is one of the attention mechanisms and has successfully applied to reading comprehension, abstractive summarisation, 

text implication and learning task-independent sentence representation (Vaswani et al., 2017). For example, word vector 

feature extraction is usually used in sentiment analysis, while general embedding methods, such as word2vec, need to combine 

context to clarify the semantics and lose the sequence information of sentences. Self-attention can effectively solve the above 

problems. 

 

Vaswani et al. (2017) propose the Transformer model, which advantage is that it can solve the issues of the slow training speed 

and low efficiency of the RNN model by using self-attention to achieve a fast parallel effect. In addition, it can dig deep into 

the characteristics of Deep Neural Networks (DNN) and improve the efficiency and performance of the model. Beginning in 

2018, pre-trained models have entered a prosperous stage. As a result, a large number of pre-trained models have emerged to 

solve various problems. Among them, GPT (Radford et al., 2018), ELMo (Peters et al., 2018), BERT (Devlin et al., 2019), 

GPT-2 (Radford et al., 2019), and GPT3 (Brown et al., 2020) are typical representatives of pre-trained models. 

 

The pre-trained model can embed common sense with nothing to do with the target task, such as grammatical and semantic 

knowledge (Su et al., 2021). The pre-trained model can transfer the learned ability to downstream tasks, which solves resource 

shortages. The pre-trained model supports many NLP tasks, such as natural language understanding and generation tasks 

(Devlin et al., 2019; Bao et al., 2020; Yang et al., 2019; Dong et al., 2019). The pre-trained model provides scalable solutions 

for various applications, and it supports new functions that only need to be fine-tuned through task-specific labelled data. The 

pre-trained model’s initial performance is very high, and the speed of performance improvement in the training phase is also 

breakneck, and the model’s fusion is good. The disadvantage is that the pre-trained model needs to meet physical conditions 

before being used. 

 

CROSS-LINGUAL PRE-TRAINED MODELS FOR CLSA 

Typical cross-lingual pre-trained models include BERT, ELMo, ULMFiT, multilingual BERT, XLM-R, and MetaXL. This 

section will discuss the pre-trained models for CLSA. 

 

Task-specific CLSA model based on BERT 

In bilingual and multilingual countries, Code-Switching is a widespread phenomenon, that is, the use of multiple languages in 

a single utterance (Priyadharshini et al., 2020; Sitaram et al., 2019; Jose et al., 2020). However, few annotation data sets are 

available in the Code-Mixed language in the Dravidian language, and there is no way to perform sentiment analysis. Previous 

work has shown that the BERT-based model achieves the most advanced performance when dealing with SA tasks. To this end, 

Gupta, Rallabandi and Black (Gupta, Rallabandi & Black, 2021) use BERT (Devlin et al., 2019), mBERT (Devlin et al., 2019), 

XLM-RoBERTa (Conneau et al., 2020), and TweetEval (Barbieri et al., 2020) for SA on two other code-switched Dravidian 

languages (Tamil-English and Malayalam English (Chakravarthi et al., 2020)). Their experiments show that task-specific pre-

training results in superior zero-shot and supervised performance, better than the performance achieved by leveraging cross-

lingual transfer from multilingual BERT models. 

 

Although the model has achieved good performance, its cross-lingual transmission effect on specific data sets is not very good, 

and the pre-training using cross-lingual and particular tasks does not significantly improve the model's performance, so we can 

explore how to solve these two problems in the future work. 

 

CLSA model based on ELMo, ULMFiT, and BERT 

Sentiment analysis for English has made significant progress, but due to the sparseness of Japanese and its dependence on 

large data sets, there are little researches on sentiment analysis for Japanese. Today, the pre-trained transfer model has made 

significant progress. Therefore, Bataa and Wu (2019) focus on studying whether the existing methods are helpful in Japanese. 

Based on the idea of TL, they are committed to verifying the effectiveness of ELMo (Peters et al., 2018), ULMFiT (Howard & 

Ruder, 2018), and BERT (Devlin et al., 2019) in Japanese SA tasks. In their research, the model they fine-tune on the pre-

trained model to apply to a specific study is called a TL model. Firstly, they use Japanese Wikipedia4 to pre-train ELMo, 

ULMFiT, and BERT for comparison under the same pre-trained conditions. The experiment’s downstream task is to 

experiment with Rakuten product review and Yahoo movie review datasets and divide its sentiment polarity into two 

categories and five ones. The experiment uses the Rakuten product review dataset for pre-trained model comparison research 

and the Yahoo movie review dataset for ablation research. The purpose of ablation research is to understand better the 

effectiveness of TL models in Japanese SA. Secondly, they trained ELMo with Biattentiv Classification Network (BCN) and 



  

 

The 21st International Conference on Electronic Business, Nanjing, China, December 3-7, 2021 

27 

ULMFiT on the Rakuten product review dataset. The training results show that the error rates of ELMo + BCN and ULMFiT 

in two and five categories are lower than other non-pre-trained models. 

 

On the Rakuten product review dataset, ULMFiT achieved the lowest error percentages on the second classification task, and 

BERT achieved the lowest error percentages on the five classification tasks. In addition, BERT achieved the lowest error 

percentages on the Yahoo movie review dataset’s double classification task error percentages. The experimental results show 

that the method based on TL performs better than the specific task model trained three times the data. ELMo and ULMFiT can 

also show promising results in the small corpus, which provides a feasible solution to low-resource language SA tasks. 

However, BERT’s training performance on the small-scale training set is lacking. Therefore, if selecting BERT as the 

migration model, a large amount of training data is still needed for functional SA. 

 

Nevertheless, they prove that TL can effectively solve Japanese SA problems. However, whether these pre-trained models are 

helpful in other natural language processing tasks is worth studying. In addition, if these models are practical, it is worth 

discussing whether we can get the same results and conclusions in the future. 

 

CLSA model based on Multilingual BERT 

The pre-trained model has made good progress in many English NPL tasks. However, there is a lack of training data in other 

languages, and the cost of generating new resources for a specific language is too high. Dong and de Melo (2019) propose a 

self-learning framework based on multilingual BERT to address the issues. Choosing multilingual BERT is that it performs 

well in the cross-lingual transfer of natural language tasks and can better solve sentiment analysis. It first learns from the 

available English samples and then predicts the unlabeled non-English samples. The samples with high confidence prediction 

scores are used as the marking examples for the next fine-tuning iteration until the model can implement cross-lingual tasks. 

For SA from English to Chinese, on datasets Yelp and Chinese hotel reviews, their experiments show that their model is better 

than the baseline in terms of accuracy. 

 

In the future, it is worth extending the model by introducing a larger dataset with further fine-grained classification and content 

analysis. 

 

CLSA model based on XLM-R 

The emotions expressed by language may be diverse, but a positive tone can help those who attempt to harm themselves 

(Chakravarthi, 2020). Therefore, Hossain, Sharif, and Hoque (2021) use pre-trained model XLM-R model for CLSA on 

comments from the social media platform YouTube with 28,451, 20,198, and 10,705 words in English, Tamil and Malayalam, 

particularly to identify whether a social media comment or article contains a positive tone. Their experiments show that their 

XLM-R model outperforms ML and DL baselines in terms of F1-score, precision, and recall as evaluation indicators. In 

addition, the performance of the XML-R model is better than all baseline models. In the future, we can also try to integrate 

context embedding based on sentiment analysis and pre-training models to explore the feasibility of the research. 

 

CLSA model based on MetaXL 

The combination of the pre-trained model and TL can effectively solve NPL tasks. However, for monolingual corpora or 

languages with very low annotation, the effect of transfer learning is not very good, and multi-lingual representation has little 

correlation between different languages, which is also a big challenge for CLSA. Meta-learning can make the source language 

learn and transform under the guidance of the target task (Finn, Abbeel & Levine, 2017), and the pre-trained model based on 

BERT is the most advanced multi-lingual training model at present. Xia et al. (2021) propose a MetaXL model combining 

meta-learning, TL and pre-training, and evaluating the CLSA task model to solve the above problems. The experiment uses 

Multi-lingual Amazon Reviews Corpus (MARC) (Keung et al., 2020), SentiPers (Hosseini et al., 2018), and Sentiraama 

(Gangula & Mamidi, 2018) as data sets, English as the source language, and Persian and Telugu as target language. Xia et al. 

use F1-score as an index to evaluate the performance of the model. The experimental results show that MetaXL can effectively 

transmit representations in other languages. Combined with the pre-trained model, the source language can be closer to the 

target language, and the model’s performance is good. 

 

This model has achieved good performance by placing fewer representation conversion networks on multiple layers of the pre-

trained model. In future work, we can study the effect of placing numerous networks on various layers and improving the 

transfer language performance. 

 

DISCUSSION 

Cross-lingual representation has played an essential role in overcoming language barriers in natural language processing. Pre-

trained language models have succeeded in lingual classification problems. Therefore, we can view an SA task as an emotion 

classification problem to deal with pre-trained language models. Although SA tasks use the pre-trained model widely, it does 

not perform well when a pre-trained model faces aspect-level SA (e.g., fine-grained SA). Applying pre-trained models in fine-

grained SA tasks, especially cross-lingual fine-grained SA tasks, is more challenging. 

 

Table 1 compares different cross-lingual pre-trained models for SA, especially their pros and cons. The pre-training results of 

TweetEval in specific tasks have excellent zero-shot, and we can use supervision performance as a baseline for future research. 



  

 

The 21st International Conference on Electronic Business, Nanjing, China, December 3-7, 2021 

28 

However, the cross-lingual transmission effect of this model on particular data sets is not very good. BERTbase uses TL 

technology and pre-trained models to solve Japanese sentient classification and shows the possibility of this work in the future. 

However, the model does not perform K-fold validation, which may lead to inaccurate performance evaluation. Multilingual 

BERT improves classification accuracy without target language training data and uses unlabeled text to enhance the cross-

language transmission of text classification in SA. Finally, XLM-R has cross-lingual synthesis capabilities at different 

language levels and performs well, but it cannot reflect the intrinsic meaning of sentences. MetaXL makes the target language 

and the source language closer in the representation space, with good transmission performance, but it has not yet explored 

placing multiple conversion networks in various layers of the pre-trained model. 

 

Table 2 compares the performance of various cross-lingual pre-trained models, and Figure 2 displays the comparison against 

different datasets and each evaluation criterion. For the performance comparison of accuracy, because some models do not use 

this indicator to evaluate model performance, we do not show the accuracy values of these models in the figure, and the same 

is true for other performance indicators. As shown in Table 2 and Figure 2, for accuracy, multilingual BERT achieves the best 

performance, reaching 83.10%; for precision, recall and F1-score, XLM-R achieves the best performance, reaching 0.931; and 

for error percentage, BERTbase achieves the best performance, only 4.68%. 

 

Table 1: Cross-lingual pre-trained models for SA. 

Reference Model Task Advantage Disadvantage Dataset 

(Gupta, 

Rallaband

i & Black, 

2021) 

TweetEval Task-specific pre-

training and cross-

lingual transfer for 

sentiment analysis 

Strong pertinence, 

good performance, 

can be used as a 

baseline for future 

sentiment analysis 

work 

Poor cross-lingual 

transmission 

Tamil-English 

(Chakravarthi, 2020), 

Malayalam English 

(Chakravarthi, 2020), 

Sentimix Hinglish (Patwa 

et al., 2020) 

(Bataa & 

Wu, 

2019) 

BERTbase Japanese sentiment 

classification 

Use TL technology 

and pre-trained 

models to solve 

Japanese sentiment 

classification 

Did not perform K-

fold validation 

Japanese Rakuten product 

review binary (Zhang & 

LeCun, 2017), five class 

Yahoo datasets 

(Dong & 

de Melo, 

2019) 

Multilingu

al  

BERT 

Sentiment 

classification 

Improve 

classification 

accuracy without 

target language 

training data 

No shortcomings for 

the time being 

Yelp and Chinese hotel 

reviews (Zhang, Zhao & 

LeCun, 2015), (Chen et 

al., 2018) 

(Hossain, 

Sharif & 

Hoque, 

2021) 

XLM-R Multi-classification 

text sentiment 

analysis 

Have cross-lingual 

comprehension 

capabilities at 

different language 

levels 

Cannot apprehend 

the inherent 

meaning of 

sentences 

Hope speech corpus 

(Chakravarthi & 

Muralidaran, 2021) 

(Xia et 

al., 2021) 

MetaXL Multilingual 

transfer for CLSA 

Make the target 

language and the 

source language 

closer in the 

representation space, 

with  

good transmission 

performance 

Have not yet 

explored placing 

multiple conversion 

networks on 

multiple layers of  

the pre-trained 

model 

Multi-lingual Amazon 

Reviews Corpus (MARC) 

(Keung et al., 2020), 

SentiPers (Hosseini et al., 

2018), Sentiraama  

(Gangula & Mamidi, 

2018). 

Source: This study. 

 

 

 

 

 

Table 2: The performance comparison of various cross-lingual pre-trained models for SA. 

Reference Model Accuracy Precision Recall F1-score Error 

(Gupta, Rallabandi 

& Black, 2021) 

TweetEval(1) N/A 78% 78% 78% N/A 

(Gupta, Rallabandi 

& Black, 2021) 

TweetEval(2) N/A 76% 79% 77% N/A 

(Bataa & Wu, 2019) BERTbase(1) N/A N/A N/A N/A 4.68% 

(Bataa & Wu, 2019) BERTbase(2) N/A N/A N/A N/A 8.42% 

(Bataa & Wu, 2019) BERTbase(3) N/A N/A N/A N/A 10.14% 
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(Dong & de Melo, 

2019) 

Multilingual 

BERT(1) 
83.10% N/A N/A N/A N/A 

(Dong & de Melo, 

2019) 

Multilingual 

BERT(2) 
43.88% N/A N/A N/A N/A 

(Hossain, Sharif & 

Hoque, 2021) 
XLM-R(1) N/A 93.1% 93.1% 93.1% N/A 

(Hossain, Sharif & 

Hoque, 2021) 
XLM-R(2) N/A 61.0% 60.9% 60.2% N/A 

(Hossain, Sharif & 

Hoque, 2021) 
XLM-R(3) N/A 85.9% 85.2% 85.4% N/A 

(Xia et al., 2021) MetaXL(1) N/A N/A N/A 88.3% N/A 

(Xia et al., 2021) MetaXL(2) N/A N/A N/A 88.8% N/A 

Source: This study. 

 

 
Source: This study. 

Figure 2: The performance comparison of cross-lingual pre-trained models. 

 

CONCLUSION 

CLSA is an essential kind of SA. In this paper, we review the application of pre-trained models in CLSA, compare their 

similarities and differences, including pros and cons and point out the direction of future improvement. Besides, we also 

provide some available cross-lingual resources. One of CLSA’s future works is the fine-grained CLSA, which is very 

challenging but significant in practice. Compared with text-based CLSA, multimodal CLSA is also a topic worthy of in-depth 

study. Besides, pre-trained language models are essential for NLP. Therefore, the application of pre-trained language models to 

CLSA deserves researchers’ more attention. 
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