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ABSTRACT 

Railway data has been acknowledged as a vital asset for analyzing and enhancing the performance of railway enterprises and 

their supply chain partners. Therefore, data sharing among different organizational stakeholders has become a crucial issue. 

However, the proprietary nature of railway internal data poses challenges for cross-organizational data sharing, making a 

secure and privacy-preserving solution essential. In this context, the railway industry has paid attention to homomorphic 

encryption. The emerging technology provides a technical foundation for railway data sharing by enabling computations on 

encrypted data, ensuring confidentiality and trust in data sharing processes. This paper presents an application of homomorphic 

encryption to support privacy-preserving railway data sharing, conducting a comparative case study based on railway mileage 

calculation and evaluating the performance of three HE schemes (Paillier, BFV, CKKS). The results highlight the differences 

between the three schemes and offer guidance for their suitable application scenarios. 

 

Keywords:  Railway data, data sharing, homomorphic encryption, Paillier, BFV, CKKS. 

 

INTRODUCTION 

With the development of railway informatization, various business domains such as freight and passenger transport have 

accumulated extensive data resources. The surge in railway data has made it a crucial component in the development of the 

railway industry. These data not only help the railway enterprises in enhancing their internal transportation and operations, but 

also serves as a valuable resource for external entities such as government agencies, research institutions, and transportation 

companies, facilitating intermodal integration, safety improvement, customer experience enhancement, and more. Therefore, 

railway data holds significant asset value and is in high demand externally.  

 

However, internal data within each railway company is typically considered proprietary and confidential, and its disclosure 

could potentially harm the entire organization's interests. The current method of railway data sharing is through techniques 

such as data interfaces and direct data files transfer, which may pose security risks like data leaks. Thus, privacy-preserving 

railway data sharing is required to ensure the secure exchange and extraction of value from railway data among trusted entities. 

Homomorphic encryption provides a technical foundation for privacy-preserving data sharing. This cryptographic technique 

allows computations to be performed on encrypted data without requiring decryption (Acar et al., 2019). This unique property 

makes homomorphic encryption particularly useful for privacy-preserving computation in scenarios where sensitive data needs 

to be processed securely (Naehrig et al., 2011; Moore et al., 2014; Li et al., 2020). In the context of railway data sharing, 

homomorphic encryption can be used to achieve confidentiality of data sharing, overcome barriers to railway data sharing, and 

enable trust between internal and external organizations. 

 

Recent research on homomorphic encryption mainly focus on theoretical aspects, with limited attention given to practical 

applications (Yousuf et al, 2019). For scenarios with diverse computational requirements, practical solutions and systems 

addressing real-world problems are rare. In this paper, we seek to answer the following research question: How do various 

homomorphic encryption schemes perform when applied to the railway data sharing scenario? To this end, we conducted a 

case study on railway mileage calculation to illustrate the application in a real railway scenario, comparing the performance of 

three homomorphic encryption schemes. 

 

The rest of this paper is structured as follows. The second section presents the related work about privacy-preserving data 

sharing and homomorphic encryption technology. The third section illustrates the application of homomorphic encryption to 

railway data sharing. In fourth section, we present a comparative evaluation of three homomorphic encryption (HE) schemes. 

Finally, the fifth section concludes this paper. 
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RELATED WORK 

In this section, we provide an overview of current privacy-preserving railway data sharing and give some homomorphic 

encryption applications in other industries. Following this, we discuss the notable homomorphic encryption libraries that 

implement homomorphic encryption schemes. Finally, we delve into a detailed description of three specific HE schemes: 

Paillier, BFV, and CKKS, which will be utilized in the fourth section. 

 

Privacy-Preserving Railway Data Sharing 

With the increasing data sharing needs among railway companies and external companies, protecting sensitive information has 

become increasingly important. Currently, railway data sharing in China, particularly in intermodal transport (such as sea-rail 

transportation), is primarily facilitated through Electronic Data Interchange (EDI) platforms. These platforms enable the 

efficient exchange of key information such as the schedules of ship and train , freight rates, cargo status, and customs 

supervision. EDI is designed to enhance operational efficiency by ensuring the fast transmission of data between parties. 

However, its primary focus is on facilitating data exchange between parties to improve efficiency, rather than ensuring privacy 

protection. As a result, there has been relatively little research on privacy-preserving methods for railway data sharing. 

Homomorphic encryption, as one of the key technologies in privacy protection, has been widely used in various industries 

(Wood et al., 2020; Chen et al., 2021; Ali et al, 2023). By drawing on successful applications in other fields, the railway 

industry can enhance its data-sharing capabilities while preserving privacy. 

 

In various industries, homomorphic encryption has been effectively used to protect sensitive data while enabling secure 

processing and decision-making. For instance, in healthcare, homomorphic encryption is employed to securely process 

sensitive patient data. Li et al. (2020) proposed a privacy-preserving medical diagnosis scheme, using the Paillier scheme and 

Euclidean distance to diagnose the disease of the patients while keeping patients’ health data privacy. Li et al. (2022) proposed 

a secure decision-making scheme for IoMT applications, which used GSW scheme to handle linear functions effectively and 

securely. In finance, Balch et al. (2020) applied threshold fully homomorphic encryption to inventory matching, protecting the 

privacy of both buyers and sellers. Similarly, in the smart grid domain, Lin et al. (2022) proposed a power data sharing scheme 

based on blockchain and homomorphic encryption to improve data privacy. 

 

For the railway industry, these applications have demonstrated the ability of homomorphic encryption to address privacy 

concerns while enabling secure and efficient data sharing.  

 

Homomorphic Encryption Libraries 

With the development of HE, more and more efficient and freely available HE libraries have emerged to simplify the 

application of theoretical concepts(Doan et al., 2023). Table 1 provides a summary of these implementations, detailing the 

libraries’ name, supported schemes and programming language. 

 

Table 1: Homomorphic encryption libraries. 

Libraries Supported Schemes Language 

SEAL BFV, CKKS C++ 

HElib BGV, CKKS C++ 

FHEW FHEW C++ 

HEAAN CKKS C++ 

PALISADE BFV, BGV, CKKS, FHEW, TFHE C++ 

Lattigo BFV, CKKS Go 

Pyfhel BFV, BGV, CKKS Python 

OpenFHE BFV, BGV, CKKS, FHEW, TFHE, LMKCDEY C++ 

TenSEAL Python version of SEAL Python 

NuGet C# version of SEAL C# 

node-seal JavaScript version of SEAL JavaScript/TypeScript 

While there are numerous homomorphic encryption libraries available in various programming languages, such as C++ and C#, 

we chose to conduct our experiments using a Python library due to its compatibility with various data processing and analysis 

frameworks.  

 

In this study, we selected the TenSEAL library for implementing homomorphic encryption due to its superior performance in 

ciphertext addition operations. Previous research has demonstrated that TenSEAL outperforms the Pyfhel library for both 
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CKKS and BFV schemes across all tested values of ciphertext dimension (Wiryen et al., 2024). The enhanced performance of 

TenSEAL in handling encrypted arithmetic operations makes it an ideal choice for our application, which requires efficient and 

secure processing of large-scale encrypted data. 

 

Description Of Three HE Schemes 

Homomorphic Encryption schemes primarily consist of four core algorithms: Key Generation (KenGen), Encryption, 

Decryption, and Evaluation (Eval). The subsequent sections will introduce and detail the algorithms of the Paillier, BFV, and 

CKKS schemes. 

 

Paillier 
In 1999, Paillier introduced a novel encryption scheme based on the composite residuosity problem (Rivest et al., 1978). It 

questions whether there exists an integer x such that 𝑥𝑛 ≡ 𝑎(mod 𝑛2)  for a given integer a. Paillier scheme is Partially 

Homomorphic Encryption (PHE), which allows only one type of operation with an unlimited number of times. In other words, 

it allows only an unbounded number of additions but no multiplications. The following describes the main algorithm flow of 

Paillier scheme. 

1. KeyGen Algorithm: For large primes p and q such that gcd (pq, (p − 1)(q − 1)) = 1, compute n = pq and λ = lcm(p − 1, q − 

1). Then, select a random integer g ∈ ℤ
n2
∗  by checking whether 𝑔𝑐𝑑(𝑛, 𝐿(𝑔𝜆mod𝑛2

)) = 1, where the function L is defined as L(u)=(u-

1)/n for every u from the subgroup ℤ
𝑛2
∗  that is a multiplicative subgroup of integers modulo 𝑛2. Finally, the public key is (n, g) 

and the secret key is a (p, q) pair. 

2. Encryption Algorithm: Randomly generate r. Input plaintext m, and output the ciphertext 𝑐 = 𝑔m𝑟n(mod𝑛2). 

3. Decryption Algorithm: For a proper ciphertext c < n2, output the plaintext 𝑚′ =
𝐿(𝑐𝜆(mod𝑛2))

𝐿(𝑔𝜆(mod𝑛2))
mod𝑛. 

4. Homomorphic Addiction: Input ciphertext c and 𝑐′, and compute and output the addition result 𝑐𝑎𝑑𝑑 = 𝑔𝑐+𝑐′(𝑟1 · 𝑟1)𝑛(mod𝑛2). 

 

BFV 
In 2012, Fan & Vercauteren (2012) made modifications to Brakerski’s Fully Homomorphic Encryption scheme based on 

Learning With Errors (LWE) to work under the security assumption of RLWE, proposing the BFV scheme. BFV scheme is 

Fully Homomorphic Encryption (FHE), which allows an unlimited number of operations for an unlimited number of times. In 

other words, it allows both additions and multiplications. The BFV scheme involves multiple steps, as mentioned below. 

1. KeyGen Algorithm: Choose appropriate security parameters, the modulus q and plaintext space R. Randomly generate 𝑠 ← 𝜒, 

and set private key 𝑠𝑘 ← (1, 𝑠). Randomly generate 𝑎 ← 𝑅𝑞 , 𝑒 ← 𝜒, and set public key 𝑝𝑘 ← (𝑏, 𝑎), where 𝑏 = −(𝑎𝑠 + 𝑒) · 𝑎, a is from 

plaintext space, and e is from noise space. 

2. Encryption Algorithm: Represent the plaintext m as an integer in the plaintext space R. Generate a small random error e 

from a distribution centered around 0. Output the ciphertext 𝑐 = (𝑞𝑚 + 2𝑒 + 𝑠)mod𝑞. 

3. Decryption Algorithm: Output the plaintext 𝑚′ = (𝑐 mod 𝑞) mod 𝑅. 

4. Homomorphic Addiction: Input ciphertext c and 𝑐′, and compute and output the addition result 𝑐𝑎𝑑𝑑 = c +  c′ mod 𝑞. 

5. Homomorphic Multiplication: Input ciphertext c and 𝑐′, and compute and output the multiplication result 𝑐𝑚𝑢𝑙𝑡 = 𝑐 · 𝑐′mod𝑞2. 

 

CKKS 
In 2017, Cheon et al. (2017) proposed a scheme of homomorphic encryption CKKS, which supports real number and complex 

number approximations. CKKS scheme is Fully Homomorphic Encryption (FHE). The following describes the main algorithm 

flow of CKKS. 

Set safety parameters 𝜆, and choose the power of two integers N. Set distributions 𝜒𝑘𝑒𝑦, 𝜒𝑒𝑟𝑟 , 𝜒𝑒𝑛𝑐 for key, learning with errors, and 

encryption on 𝑅 = ℤ[𝑋]/(𝑋𝑁 + 1) individually. To get a basic integer p and the number of levels L, set the modulus of the 

ciphertext 𝑞𝑙 = 𝑝𝑙(1 ≤ 𝑙 ≤ 𝐿) , where l is the level of ciphertext, then create an integer P at random, and output 𝑝𝑝 =

(𝑁, 𝜒𝑘𝑒𝑦, 𝜒𝑒𝑟𝑟 , 𝜒𝑒𝑛𝑐 , 𝐿, 𝑞𝑙): 

1. KeyGen Algorithm: Randomly generate 𝑠 ← 𝜒𝑘𝑒𝑦, and set private key 𝑠𝑘 ← (1, 𝑠). Randomly generate 𝑎 ← 𝑈(𝑅𝑞𝐿
) and 𝑒 ← 𝜒𝑒𝑟𝑟, set 

𝑝𝑘 ← (−𝑎𝑠 + 𝑒, 𝑎) ∈ 𝑅𝑞𝐿
2 . Randomly generate 𝑎′ ← 𝑈(𝑅𝑞2/𝐿) and 𝑒 ′ ← 𝜒𝑒𝑟𝑟, and set 𝑒𝑣𝑘 ← (−𝑎′𝑠 + 𝑒 ′ + 𝑞𝐿𝑠2, 𝑎′) ∈ 𝑅𝑞2/𝐿. 

2. Encryption Algorithm: Randomly generate 𝑟 ← 𝜒𝑒𝑛𝑐 and 𝑒0, 𝑒1 ← 𝜒𝑒𝑟𝑟; input plaintext m, and output the ciphertext 𝑐 = 𝑟 · 𝑝𝑘 + (𝑚 +

𝑒0, 𝑒1)(mod𝑞𝐿). 

3. Decryption Algorithm: For ciphertext of level l, compute and output the plaintext 𝑚′ =< 𝑐, 𝑠𝑘 > (𝑚𝑜𝑑𝑞𝑙)
′. 

4. Homomorphic Addiction: For the ciphertext c, 𝑐′ of the same level l, input c and 𝑐′, and compute and output the addition 

result 𝑐𝑎𝑑𝑑 = 𝑐 + 𝑐′(mod𝑞𝑙). 

5. Homomorphic Multiplication: 𝑐 = (𝑐0, 𝑐1), 𝑐′ = (𝑐0
′ , 𝑐1

′ ) ∈ 𝑅𝑞𝑙

2  . Compute (𝑑0, 𝑑1, 𝑑2) = (𝑐0𝑐0
′ , 𝑐0𝑐1

′ + 𝑐0
′ 𝑐1, 𝑐1𝑐1

′ )(mod𝑞𝑙). Output the result of 

ciphertext multiplication 𝑐𝑚𝑢𝑙𝑡 = (𝑑0, 𝑑1) + ⌊𝑝−1 · 𝑑2 · 𝑠𝑘⌋(mod𝑞𝑙).  

 

APPLYING HOMOMORPHIC ENCRYPTION TO RAILWAY DATA SHARING 

In this section, we apply homomorphic encryption to railway data sharing, conducting a case study based on railway mileage 

calculation to illustrate the practically of our work. 
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Application Scenario 

In the field of railway income liquidation, accurate prediction of mileage is crucial for settlement companies, as it directly 

impacts the computation of railway access charges. However, current mileage calculations present a set of challenges, 

including issues of trust and data security. 

 

Railway mileage data, reported independently by each railway bureau, suffers from inconsistencies due to varying standards, 

methods, and human factors. This undermines the accuracy crucial for settlement processes, impacting fairness and reliability. 

Furthermore, data security poses a significant challenge, with sensitive statistics data often inaccessible to settlement 

companies, raising concerns about potential leaks. 

 

Generalizing from railway mileage calculation, we consider four types of stakeholders in the scenario. Fig. 1 illustrates the 

method. 

1. Railway Bureau: The railway bureau is the owner and sharer of railway data. It owns the railway data and hopes to share, 

utilize and realize data assets, but is worried that the reproducibility of data assets may lead to the secondary transfer of the 

shared data, and make yourself lose the dominance of data.  

2. Settlement Company: The settlement company is the requestor and user of data, who lacks data and needs to obtain data 

from railway bureaus to liquid income. The settlement company submits data requests and computing services in the Railway 

Data Service Platform according to their needs, and need to obtain the results of joint computation in order to guide income 

liquidation.  

3. Railway Data Service Platform: The Railway Data Service Platform is responsible for accepting requests from data 

demanders such as settlement companies and distributing the requests to data providers like the railway bureau. Once all of the 

involved data provider agrees to the data request, the Railway Data Service Platform will generate a homomorphic encryption 

key pair and send the public key to the data provider and the private key to the data demander. Since the Railway Data Service 

Platform only has the homomorphic encryption key pair and will not have access to both original data of data providers and 

ciphertext homomorphic result, it ensures the security of the data sharing process. 

4. Cloud Server: The cloud server is responsible for receiving the ciphertext data uploaded by the data provider and performing 

homomorphic encryption calculations, and returns the generated ciphertext results to the data demander. Since the cloud server 

only has the ciphertext data and the ciphertext result, it ensures the security of the data sharing process. 

 
Figure 1: The multiple stakeholders in privacy-preserving railway data sharing. 

 

Application Solution 

Under the background of mileage calculation, a case study is conducted in to verify our proposed privacy-preserving data 

sharing solution. The whole data sharing process can be divided into four stages: application, initialization, encryption and 

computation, and decryption. Here, the homomorphic encryption algorithm takes the Paillier algorithm as an example. Fig. 2 

illustrates each stage of this solution. 

 
Application Stage: 

First, the settlement company S need to submit a application request to obtain data usage rights. The application needs to 

include which railway bureaus’ data is needed and what kind of data is required. When the application is sent to server, the 

server can automatically recognize which railway bureaus 𝑅𝑖(𝑖 ∈ 1,2,3, . . . 𝑛)  are included in the application and sends the 

application to railway bureaus. Then, railway bureaus can review the application. Joint calculations can only be done when 

railway bureaus all agree.  
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Initialization Stage: 

In order to achieve encryption, the Railway Data Service Platform will generate a homomorphic encryption public and private 

key pairs 𝑃𝐾𝐻𝐸  and 𝑆𝐾𝐻𝐸 . 𝑃𝐾𝐻𝐸  will be sent to involved railway bureaus to encrypt data and 𝑆𝐾𝐻𝐸  will be sent to settlement 

company to decrypt data.  

 

Encryption and Computation Stage: 

Railway bureaus 𝑅𝑖  encrypt data 𝑀𝑖 = {𝑃𝑖 , 𝑆𝑖} homomorphially, where 𝑃𝑖  represents the unique train number which is same in 

different railway bureaus and 𝑆𝑖  represents the railway mileage data. 𝑃𝑖 = {

𝑝1
𝑝2

. . .
𝑝𝑛

} and 𝑆𝑖 = {

𝑠11 𝑠12
. . . 𝑠1𝑘

𝑠21 𝑠22
. . . 𝑠2𝑘

. . .
𝑠𝑛1

 
𝑠𝑛2

 
. . .

. . .
𝑠𝑛𝑘

} (𝑠𝑝𝑞 ∈ 𝑅, 𝑝 = 1,2, . . . 𝑛; 𝑞 =

1,2, . . . 𝑘) . Encrypt each data 𝑠𝑝𝑞  sequentially using the homomorphic public key 𝑃𝐾𝐻𝐸  to obtain ciphertext data  𝑐𝑡𝑥𝑡𝑠𝑝𝑞 =

𝐸𝑛𝑐(𝑠𝑝𝑞 , 𝑃𝐾𝐻𝐸)(Enc is Homomorphic encryption algorithm). Encrypt data is 𝐶𝑡𝑥𝑡𝑖 = {

𝑐𝑡𝑥𝑡11 𝑐𝑡𝑥𝑡12 . . . 𝑐𝑡𝑥𝑡1𝑘

𝑐𝑡𝑥𝑡21 𝑐𝑡𝑥𝑡22 . . . 𝑐𝑡𝑥𝑡2𝑘
. . .

𝑐𝑡𝑥𝑡𝑛1

 
𝑐𝑡𝑥𝑡𝑛2

 
. . .

. . .
𝑐𝑡𝑥𝑡𝑛𝑘

}. So 𝑀𝑖 becomes 𝐶𝑖 =

{𝑃𝑖 , 𝐶𝑡𝑥𝑡𝑖}. 

Then, railway bureaus 𝑅𝑖 send encrypted data 𝐶𝑖 to Cloud Server. After receiving all encrypted data, the server can calculate 

railway mileage homomorphially and generate the result. The calculation process is below. 

Perform additive homomorphic computation on the k fields data of each data record with the same train number in all 

ciphertexts. Assume that there are t railway bureaus with the same train number, taking the calculation of one field data in one 

train number as an example: 
𝐶𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑐𝑡𝑥𝑡𝑠1 · 𝑐𝑡𝑥𝑡𝑠2 ·. . .· 𝑐𝑡𝑥𝑡𝑠𝑡    

= 𝐸𝑛𝑐𝐻𝐸(𝑐𝑡𝑥𝑡𝑠1, 𝑃𝐾𝐻𝐸) · 𝐸𝑛𝑐𝐻𝐸(𝑐𝑡𝑥𝑡𝑠2, 𝑃𝐾𝐻𝐸) ····· 𝐸𝑛𝑐𝐻𝐸(𝑐𝑡𝑥𝑡𝑠𝑡 , 𝑃𝐾𝐻𝐸)      (1) 

  = 𝑔𝑐𝑡𝑥𝑡𝑠1+𝑐𝑡𝑥𝑡𝑠2+...+𝑐𝑡𝑥𝑡𝑠𝑡 · (𝑟1 · 𝑟2 ···· 𝑟𝑡)𝑛(mod𝑛2)                                                                         
After computing the all fields for all train numbers separately, we obtain the ciphertext data 𝐶𝑡𝑥𝑡𝑎𝑙𝑙. 

Decryption Stage: 

Once the Cloud Server calculates result successfully, it can send result of the ciphertext to settlement company. The settlement 

company can use their private key to decrypt the result. The settlement company S uses the private key 𝑆𝐾𝐻𝐸 to decrypt each 

data in sequentially, taking decrypting 𝐶𝑡𝑥𝑡 as an example: 

𝑀𝑟𝑒𝑠𝑢𝑙𝑡 = 𝐿(𝐶𝑡𝑥𝑡𝜆mod𝑛2) · 𝜇mod𝑛                                                                                         (2) 

 
Figure 2: Sequence diagram of each stage of the method. 
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COMPARISONS BETWEEN THE IMPLEMENTATIONS OF VARIOUS SCHEMES 

In this section, we will present a comparative study of three homomorphic encryption schemes: Paillier, BFV, and CKKS. To 

begin with the implementation of HE, we choose two Python libraries: phe and TenSEAL. We use the phe library to 

implement Paillier and use the TenSEAL library to implement BFV and CKKS. Experimental environment: the hardware used 

featured an Apple M2 with 8-core and 16 GB of memory. The software environment was MacOS, with Anaconda3, Python 

version 3.9, and the programming tool was Pycharm. 

 

To implement the Paillier cryptosystem, the n_length parameter must be set in the phe library. For the BFV scheme in the 

TenSEAL library, two parameters need to be configured: poly_modulus_degree and plain_modulus. Implementing the CKKS 

scheme in the TenSEAL library requires setting four parameters: poly_modulus_degree, plain_modulus, coeff_mod_bit_sizes, 

and global_scale. There are five main HE parameters used by the schemes: 

1. n_length (Paillier): The security of the Paillier scheme depends on the size of n. A larger n provides higher security but also 

increases computational overhead.  

2. poly_modulus_degree (BFV, CKKS): This parameter determines the degree of the polynomial modulus. It directly affects 

the ciphertext size and the security level. A higher degree provides better security but increases computation and memory 

requirements.  

3. plain_modulus (BFV): This is the modulus used for plaintext operations in the BFV schemes. It must be appropriately 

chosen to balance between the size of the plaintext space and the efficiency of the scheme. It affects batching capabilities for 

BFV. 

4. coeff_mod_bit_sizes (CKKS): This parameter defines the bit sizes of the coefficient modulus. It controls the number of bits 

for each coefficient in the polynomial modulus, influencing the noise budget and overall security. Proper selection is crucial to 

ensure both security and the ability to perform multiple operations before re-encryption is necessary.  

5. global_scale (CKKS): This is the scaling factor used to manage precision in CKKS. It determines how much the numbers 

are scaled during encryption. A larger scale provides higher precision but also increases the ciphertext size and computational 

complexity. 

6.  
We compare the performance of three different homomorphic encryption algorithms Paillier, BFV, and CKKS, from ciphertext 

size, encryption time, decryption time, and addition computation time. To ensure the reliability of our results, each experiment 

was conducted 50 times. However, due to the fundamental differences in three schemes, a direct one-to-one comparison of 

n_length and poly_modulus_degree is not straightforward. Instead, we perform experiments on Paillier with n_length alone 

and compare BGV and CKKS with poly_modulus_degree. 

 

Table 2 presents the performance of the Paillier scheme for different key sizes. As key size increases, the time required for key 

generation, encryption, and decryption increases significantly. For example, key generation time increases from 17.6 ms (256 

bits) to 1854.1 ms (2048 bits). So for applications requiring frequent encryption and decryption, smaller key sizes might be 

more practical if security requirements permit. The time required for homomorphic addition remains relatively low even for 

larger key sizes, suggesting that Paillier is efficient for operations that require frequent additions. Larger key sizes result in 

significantly larger ciphertexts, which can impact storage and communication efficiency. 

 

Table 2: Paillier addiction performance. 

n_length 
KeyGen 

(ms) 

Encrypt 

(ms) 

Decrypt 

(ms) 

Addition 

(ms) 

Ciphertext Size 

(bit) 

256 17.6 66.8 31.6 0.3 15382.6 

512 38.9 271.3 99.3 0.8 30785.8 

1024 264.8 1796.8 616.3 1.9 61621.1 

2048 1854.1 12160.2 3438.1 5.9 123274.2 

Fig 3 shows the comparison between BFV and CKKS. When the polynomial modulus degree is the same, compare the 

encryption time, decryption time, key generation time, and ciphertext size of different schemes. Encryption time compared 

between the two schemes which shows that when the size of vectors was 4096, 8192 the two schemes have similar time 

consumption. When the vector size increases, CKKS shows better scalability in encryption time compared to BFV, making it 

more efficient for larger data sizes. Likewise, CKKS outperforms BFV in decryption time and key generation time, particularly 

as the vector size increases. Besides, CKKS produces significantly smaller ciphertexts compared to BFV, which means CKKS 

reduces storage and transmission overhead. 
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Figure 3: Comparison of BFV and CKKS. 

 

Table 3 outlines the performance for addition and multiplication HE operations in both BFV and CKKS schemes at various 

poly_modulus_degree settings. CKKS generally exhibits faster addition times compared to BFV, making it more suitable for 

applications with frequent addition operations. Besides, CKKS is more efficient for multiplication operations, particularly at 

lower vector size settings. BFV's multiplication time increases more sharply with higher degrees, indicating higher 

computational overhead for such operation. 

 

Table 3: Comparison of BFV and CKKS addition and multiplication operations. 

HE Parameters 
BFV (ms) CKKS (ms) 

Addition Multiplication Addition Multiplication 

poly_modulus_degree 

4096 0.1547 11.0837 0.1033 2.2755 

8192 0.3324 25.8498 0.1425 5.7745 

16384 4.8757 126.8859 0.2622 6.3834 

32768 6.4437 572.1207 0.7885 32.9831 

plain_modulus 65537 65537 / 

coeff_mod_bit_sizes [40,20,40] / [40,20,40] 

global_scale 2^20 / 2^20 

To sum up, we compare the performance of the three homomorphic encryption schemes—Paillier, BFV, and CKKS—across 

several dimensions: ciphertext size, encryption time, decryption time, and addition operation time. While Paillier's simplicity 

makes it efficient for addition operations, its performance significantly degrades with increased key sizes due to higher 

computational overhead. On the other hand, CKKS demonstrates better scalability and outperforms BFV in both encryption 

and decryption time, particularly with larger datasets. BFV performs well for smaller datasets but suffers from increased 

computational overhead as the data size increases, particularly in multiplication operations. CKKS, with its efficient                      

handling of both addition and multiplication operations and smaller ciphertext sizes, is more suited for applications that require 

frequent operations on large datasets. The smaller ciphertext size generated by CKKS further enhances its efficiency for 

storage and communication, making it a practical choice for applications handling large-scale data. In practical railway income 

liquidation scenarios, CKKS's scalability makes it a favorable choice. 

 

One of the key limitations observed is the significant increase in computational overhead as key sizes grow in the Paillier and 

BFV schemes. While CKKS demonstrates better scalability, it also incurs higher computational costs for larger ciphertexts. 

Additionally, key size directly impacts both security and performance, making it critical to balance security requirements with 

computational feasibility in real-world deployments. 
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In real-world deployment, challenges such as model calibration and parameter sensitivity must be addressed. For example, 

choosing the appropriate poly_modulus_degree is critical for both BFV and CKKS schemes, as it affects both the security and 

performance of the system. Integration with existing railway systems poses additional complexities, particularly in maintaining 

efficient performance while ensuring data privacy at scale. 

 

CONCLUSION 

This paper presents a privacy-preserving method for railway data sharing based on homomorphic encryption. By leveraging 

homomorphic encryption, the method ensures that data demanders can obtain encrypted results without accessing the original 

data, thereby addressing the data protection needs of the data providers. In addition, this paper presents a comparative 

evaluation of three homomorphic encryption schemes, providing insights into their suitability for railway mileage calculation  

scenario. The applicability of our method is demonstrated through a practical application scenario, illustrating its potential for 

real-world use.  

 

However, there are certain limitations to this approach. While homomorphic encryption offers a robust solution for privacy 

preservation, its computational overhead remains a challenge, particularly in large-scale railway data exchanges. Additionally, 

the security of the system depends on the correct implementation of encryption protocols, which may require further 

investigation to ensure scalability and performance in broader contexts. 

 

Future work will focus on identifying more diverse railway data-sharing scenarios to further validate and enhance the proposed 

method. Furthermore, we plan to conduct more extensive evaluations in different railway environments to ensure the method's 

adaptability and effectiveness in various practical settings. This will also include an exploration of potential integration with 

other privacy-preserving technologies to enhance the robustness of our approach. 
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